
X11 Input Extension Library Specification

MIT X Consortium Standard

X Version 11, Release 5

Mark Patrick Ardent Computer

George Sachs Hewlett-Packard

Notice
Copyright 1989, 1990, 1991 by Hewlett-Packard Company, Ardent Computer, and the Mas-
sachusetts Institute of Technology.

Permission to use, copy, modify, and distribute this documentation for any purpose and without
fee is hereby granted, provided that the above copyright notice and this permission notice appear
in all copies. MIT, Ardent, and Hewlett-Packard make no representations about the suitability for
any purpose of the information in this document. It is provided ‘‘as is’’ without express or
implied warranty.

1. Input Extension Overview
This document describes an extension to the X11 server. The purpose of this extension is to sup-
port the use of additional input devices beyond the pointer and keyboard devices defined by the
core X protocol. This first section gives an overview of the input extension. The following sec-
tions correspond to chapters 7 and 8, "Window Manager functions" and "Events and Event-
Handling Functions" of the "Xlib - C Language Interface" manual and describe how to use the
input extension.

1.1. Design Approach
The design approach of the extension is to define functions and events analogous to the core func-
tions and events. This allows extension input devices and events to be individually distinguish-
able from each other and from the core input devices and events . These functions and events
make use of a device identifier and support the reporting of n-dimensional motion data as well as
other data that is not currently reportable via the core input events.

1.2. Core Input Devices
The X server core protocol supports two input devices: a pointer and a keyboard. The pointer
device has two major functions. First, it may be used to generate motion information that client
programs can detect. Second, it may also be used to indicate the current location and focus of the
X keyboard. To accomplish this, the server echoes a cursor at the current position of the X
pointer. Unless the X keyboard has been explicitly focused, this cursor also shows the current
location and focus of the X keyboard.

The X keyboard is used to generate input that client programs can detect.

The X keyboard and X pointer are referred to in this document as the core devices, and the input
events they generate (KeyPress, KeyRelease, ButtonPress, ButtonRelease, and MotionNotify)
are known as the core input events. All other input devices are referred to as extension input dev-
ices and the input events they generate are referred to as extension input events. This input exten-
sion does not change the behavior or functionality of the core input devices, core events, or core
protocol requests, with the exception of the core grab requests. These requests may affect the
synchronization of events from extension devices. See the explanation in the section titled
"Event Synchronization and Core Grabs".

Selection of the physical devices to be initially used by the server as the core devices is left
implementation-dependent. Functions are defined that allow client programs to change which
physical devices are used as the core devices.

1.3. Extension Input Devices
The input extension controls access to input devices other than the X keyboard and X pointer. It
allows client programs to select input from these devices independently from each other and
independently from the core devices. Input events from these devices are of extension types
(DeviceKeyPress, DeviceKeyRelease, DeviceButtonPress, DeviceButtonRelease, DeviceMo-
tionNotify, etc.) and contain a device identifier so that events of the same type coming from dif-
ferent input devices can be distinguished.

Extension input events are not limited in size by the size of the server 32-byte wire events.
Extension input events may be constructed by the server sending as many wire sized events as
necessary to return the information required for that event. The library event reformatting rou-
tines are responsible for combining these into one or more client XEvents.

Any input device that generates key, button or motion data may be used as an extension input
device. Extension input devices may have 0 or more keys, 0 or more buttons, and may report 0 or
more axes of motion. Motion may be reported as relative movements from a previous position or
as an absolute position. All valuators reporting motion information for a given extension input
device must report the same kind of motion information (absolute or relative).

1

X Input Extension Library Specification X11, Release 5

This extension is designed to accommodate new types of input devices that may be added in the
future. The protocol requests that refer to specific characteristics of input devices organize that
information by input device classes. Server implementors may add new classes of input devices
without changing the protocol requests.

All extension input devices are treated like the core X keyboard in determining their location and
focus. The server does not track the location of these devices on an individual basis, and there-
fore does not echo a cursor to indicate their current location. Instead, their location is determined
by the location of the core X pointer. Like the core X keyboard, some may be explicitly focused.
If they are not explicitly focused, their focus is determined by the location of the core X pointer.

1.3.1. Input Device Classes
Some of the input extension requests divide input devices into classes based on their functional-
ity. This is intended to allow new classes of input devices to be defined at a later time without
changing the semantics of these functions. The following input device classes are currently
defined:

KEYThe device reports key events.

BUTTON
The device reports button events.

VALUATOR
The device reports valuator data in motion events.

PROXIMITY
The device reports proximity events.

FOCUS
The device can be focused.

FEEDBACK
The device supports feedbacks.

Additional classes may be added in the future. Functions that support multiple input classes, such
as the XListInputDevices function that lists all available input devices, organize the data they
return by input class. Client programs that use these functions should not access data unless it
matches a class defined at the time those clients were compiled. In this way, new classes can be
added without forcing existing clients that use these functions to be recompiled.

1.4. Using Extension Input Devices
A client that wishes to access an input device does so through the library functions defined in the
following sections. A typical sequence of requests that a client would make is as follows:

g XListInputDevices - list all of the available input devices. From the information returned by
this request, determine whether the desired input device is attached to the server. For a
description of the XListInputDevices request, see the section entitled "Listing Available
Devices".

g XOpenDevice - request that the server open the device for access by this client. This request
returns an XDevice structure that is used by most other input extension requests to identify
the specified device. For a description of the XOpenDevice request, see the section entitled
"Enabling and Disabling Extension Devices".

g Determine the event types and event clases needed to select the desired input extension
events, and identify them when they are received. This is done via macros whose name
corresponds to the desired event, i.e. DeviceKeyPress. For a description of these macros, see
the section entitled "Selecting Extension Device Events".

g XSelectExtensionEvent - select the desired events from the server. For a description of the
XSelextExtensionEvent request, see the section entitled "Selecting Extension Device
Events".

2

X Input Extension Library Specification X11, Release 5

g XNextEvent - receive the next available event. This is the core XNextEvent function pro-
vided by the standard X libarary.

Other requests are defined to grab and focus extension devices, to change their key, button, or
modifier mappings, to control the propagation of input extension events, to get motion history
from an extension device, and to send input extension events to another client. These functions
are described in the following sections.

2. Library Extension Requests
Extension input devices are accessed by client programs through the use of new protocol
requests. The following requests are provided as extensions to Xlib. Constants and structures
referenced by these functions may be found in the files XI.h and XInput.h, which are attached to
this document as appendix A.

The library will return NoSuchExtension if an extension request is made to a server that does not
support the input extension.

Input extension requests cannot be used to access the X keyboard and X pointer devices.

2.1. Window Manager Functions

2.1.1. Changing The Core Devices
These functions are provided to change which physical device is used as the X pointer or X key-
board. Using these functions may change the characteristics of the core devices. The new
pointer device may have a different number of buttons than the old one did, or the new keyboard
device may have a different number of keys or report a different range of keycodes. Client pro-
grams may be running that depend on those characteristics. For example, a client program could
allocate an array based on the number of buttons on the pointer device, and then use the button
numbers received in button events as indicies into that array. Changing the core devices could
cause such client programs to behave improperly or abnormally terminate, if they ignore the
ChangeDeviceNotify event generated by these requests.

These functions change the X keyboard or X pointer device and generate an XChangeDeviceNo-
tify event and a MappingNotify event. The specified device becomes the new X keyboard or X
pointer device. The location of the core device does not change as a result of this request.

These requests fail and return AlreadyGrabbed if either the specified device or the core device it
would replace are grabbed by some other client. They fail and return GrabFrozen if either dev-
ice is frozen by the active grab of another client.

These requests fail with a BadDevice error if the specified device is invalid, has not previously
been opened via XOpenDevice, or is not supported as a core device by the server implementa-
tion.

Once the device has successfully replaced one of the core devices, it is treated as a core device
until it is in turn replaced by another ChangeDevice request, or until the server terminates. The
termination of the client that changed the device will not cause it to change back. Attempts to
use the XCloseDevice request to close the new core device will fail with a BadDevice error.

To change which physical device is used as the X keyboard, use the XChangeKeyboardDevice
function.

The specified device must support input class Keys (as reported in the ListInputDevices request)
or the request will fail with a BadMatch error.

3

X Input Extension Library Specification X11, Release 5

int
XChangeKeyboardDevice (display, device)

Display *display;
XDevice *device;

display Specifies the connection to the X server.

device Specifies the desired device.

If no error occurs, this function returns Success. A ChangeDeviceNotify event with the request
field set to NewKeyboard is sent to all clients selecting that event. A MappingNotify event with
the request field set to MappingKeyboard is sent to all clients. The requested device becomes
the X keyboard, and the old keyboard becomes available as an extension input device. The focus
state of the new keyboard is the same as the focus state of the old X keyboard.

Errors returned by this function: BadDevice, BadMatch, AlreadyGrabbed, and GrabFrozen.

To change which physical device is used as the X pointer, use the XChangePointerDevice func-
tion. The specified device must support input class Valuators (as reported in the XListInput-
Devices request) and report at least two axes of motion, or the request will fail with a BadMatch
error. If the specified device reports more than two axes, the two specified in the xaxis and yaxis
arguments will be used. Data from other valuators on the device will be ignored.

If the specified device reports absolute positional information, and the server implementation
does not allow such a device to be used as the X pointer, the request will fail with a BadDevice
error.

int
XChangePointerDevice (display, device, xaxis, yaxis)

Display *display;
XDevice *device;
int xaxis;
int yaxis;

display Specifies the connection to the X server.

device Specifies the desired device.

xaxis Specifies the zero-based index of the axis to be used as the x-axis of the
pointer device.

yaxis Specifies the zero-based index of the axis to be used as the y-axis of the
pointer device.

If no error occurs, this function returns Success. A ChangeDeviceNotify event with the request
field set to NewPointer is sent to all clients selecting that event. A MappingNotify event with
the request field set to MappingPointer is sent to all clients. The requested device becomes the
X pointer, and the old pointer becomes available as an extension input device.

Errors returned by this function: BadDevice, BadMatch, AlreadyGrabbed, and GrabFrozen.

2.1.2. Event Synchronization And Core Grabs
Implementation of the input extension requires an extension of the meaning of event synchroniza-
tion for the core grab requests. This is necessary in order to allow window managers to freeze all
input devices with a single request.

4

X Input Extension Library Specification X11, Release 5

The core grab requests require a pointer_mode and keyboard_mode argument. The meaning of
these modes is changed by the input extension. For the XGrabPointer and XGrabButton
requests, pointer_mode controls synchronization of the pointer device, and keyboard_mode
controls the synchronization of all other input devices. For the XGrabKeyboard and XGrabKey
requests, pointer_mode controls the synchronization of all input devices except the X keyboard,
while keyboard_mode controls the synchronization of the keyboard. When using one of the core
grab requests, the synchronization of extension devices is controlled by the mode specified for the
device not being grabbed.

2.1.3. Extension Active Grabs
Active grabs of extension devices are supported via the XGrabDevice function in the same way
that core devices are grabbed using the core XGrabKeyboard function, except that a Device is
passed as a function parameter. The XUngrabDevice function allows a previous active grab for
an extension device to be released.

Passive grabs of buttons and keys on extension devices are supported via the XGrabDeviceBut-
ton and XGrabDeviceKey functions. These passive grabs are released via the XUngrabDevice-
Key and XUngrabDeviceButton functions.

To grab an extension device, use the XGrabDevice function. The device must have previously
been opened using the XOpenDevice function.

int
XGrabDevice (display, device, grab_window, owner_events,

event_count, event_list, this_device_mode,
other_device_mode, time)

Display *display;
XDevice *device;
Window grab_window;
Bool owner_events;
int event_count;
XEventClass *event_list;
int this_device_mode;
int other_device_mode;
Time time;

display Specifies the connection to the X server.

device Specifies the desired device.

grab_windowSpecifies the ID of a window associated with the device specified
above.

owner_eventsSpecifies a boolean value of either True or False.
event_count Specifies the number of elements in the event_list array.

event_list Specifies a pointer to a list of event classes that indicate which events
the client wishes to receive. These event classes must have been
obtained using the device being grabbed.

this_device_mode
Controls further processing of events from this device. You can pass
one of these constants: GrabModeSync or GrabModeAsync.

other_device_mode
Controls further processing of events from all other devices. You can
pass one of these constants: GrabModeSync or GrabModeAsync.

5

X Input Extension Library Specification X11, Release 5

time Specifies the time. This may be either a timestamp expressed in mil-
liseconds, or CurrentTime.

The XGrabDevice function actively grabs an extension input device, and generates DeviceFocu-
sIn and DeviceFocusOut events. Further input events from this device are reported only to the
grabbing client. This function overrides any previous active grab by this client for this device.

The event-list parameter is a pointer to a list of event classes. This list indicates which events the
client wishes to receive while the grab is active. If owner_events is False, input events from this
device are reported with respect to grab_window and are only reported if specified in event_list.
If owner_events is True, then if a generated event would normally be reported to this client, it is
reported normally. Otherwise the event is reported with respect to the grab_window, and is only
reported if specified in event_list.

The this_device_mode argument controls the further processing of events from this device, and
the other_device_mode argument controls the further processing of input events from all other
devices.

g If the this_device_mode argument is GrabModeAsync, device event processing continues
normally; if the device is currently frozen by this client, then processing of device events is
resumed. If the this_device_mode argument is GrabModeSync, the state of the grabbed
device (as seen by client applications) appears to freeze, and no further device events are gen-
erated by the server until the grabbing client issues a releasing XAllowDeviceEvents call or
until the device grab is released. Actual device input events are not lost while the device is
frozen; they are simply queued for later processing.

g If the other_device_mode is GrabModeAsync, event processing from other input devices is
unaffected by activation of the grab. If other_device_mode is GrabModeSync, the state of all
devices except the grabbed device (as seen by client applications) appears to freeze, and no
further events are generated by the server until the grabbing client issues a releasing XAl-
lowEvents or XAllowDeviceEvents call or until the device grab is released. Actual events
are not lost while the other devices are frozen; they are simply queued for later processing.

XGrabDevice fails and returns:

g AlreadyGrabbed If the device is actively grabbed by some other client.

g GrabNotViewable If grab_window is not viewable.

g GrabInvalidTime If the specified time is earlier than the last-grab-time for the specified dev-
ice or later than the current X server time. Otherwise, the last-grab-time for the specified dev-
ice is set to the specified time and CurrentTime is replaced by the current X server time.

g GrabFrozen If the device is frozen by an active grab of another client.

If a grabbed device is closed by a client while an active grab by that client is in effect, that active
grab will be released. Any passive grabs established by that client will be released. If the device
is frozen only by an active grab of the requesting client, it is thawed.

Errors returned by this function: BadDevice, BadWindow, BadValue, BadClass.

To release a grab of an extension device, use XUngrabDevice.

int
XUngrabDevice (display, device, time)

Display *display;
XDevice *device;
Time time;

6

X Input Extension Library Specification X11, Release 5

display Specifies the connection to the X server.

device Specifies the desired device.

time Specifies the time. This may be either a timestamp expressed in mil-
liseconds, or CurrentTime.

This function allows a client to release an extension input device and any queued events if this
client has it grabbed from either XGrabDevice or XGrabDeviceKey. If any other devices are
frozen by the grab, XUngrabDevice thaws them. The function does not release the device and
any queued events if the specified time is earlier than the last-device-grab time or is later than the
current X server time. It also generates DeviceFocusIn and DeviceFocusOut events. The X
server automatically performs an XUngrabDevice if the event window for an active device grab
becomes not viewable, or if the client terminates without releasing the grab.

Errors returned by this function: BadDevice.

2.1.4. Passively Grabbing A Key
To passively grab a single key on an extension device, use XGrabDeviceKey. That device must
have previously been opened using the XOpenDevice function, or the request will fail with a
BadDevice error. If the specified device does not support input class Keys, the request will fail
with a BadMatch error.

int
XGrabDeviceKey (display, device, keycode, modifiers, modifier_device

grab_window, owner_events, event_count, event_list,
this_device_mode, other_device_mode)

Display *display;
XDevice *device;
int keycode;
unsigned int modifiers;
XDevice *modifier_device;
Window grab_window;
Bool owner_events;
int event_count;
XEventClass *event_list;
int this_device_mode;
int other_device_mode;

display Specifies the connection to the X server.

device Specifies the desired device.

keycode Specifies the keycode of the key that is to be grabbed. You can pass
either the keycode or AnyKey.

modifiers Specifies the set of keymasks. This mask is the bitwise inclusive OR
of these keymask bits: ShiftMask, LockMask, ControlMask,
Mod1Mask, Mod2Mask, Mod3Mask, Mod4Mask, Mod5Mask.

You can also pass AnyModifier, which is equivalent to issuing the
grab key request for all possible modifier combinations (including the
combination of no modifiers).

modifier_device
Specifies the device whose modifiers are to be used. If NULL is
specified, the core X keyboard is used as the modifier_device.

7

X Input Extension Library Specification X11, Release 5

grab_windowSpecifies the ID of a window associated with the device specified
above.

owner_eventsSpecifies a boolean value of either True or False.

event_count Specifies the number of elements in the event_list array.

event_list Specifies a pointer to a list of event classes that indicate which events
the client wishes to receive.

this_device_mode
Controls further processing of events from this device. You can pass
one of these constants: GrabModeSync or GrabModeAsync.

other_device_mode
Controls further processing of events from all other devices. You can
pass one of these constants: GrabModeSync or GrabModeAsync.

This function is analogous to the core XGrabKey function. It creates an explicit passive grab for
a key on an extension device.

The XGrabDeviceKey function establishes a passive grab on a device. Consequently, in the
future,

g IF the device is not grabbed and the specified key, which itself can be a modifier key, is logi-
cally pressed when the specified modifier keys logically are down on the specified modifier
device (and no other keys are down),

g AND no other modifier keys logically are down,

g AND EITHER the grab window is an ancestor of (or is) the focus window OR the grab win-
dow is a descendent of the focus window and contains the pointer,

g AND a passive grab on the same device and key combination does not exist on any ancestor
of the grab window,

g THEN the device is actively grabbed, as for XGrabDevice, the last-device-grab time is set to
the time at which the key was pressed (as transmitted in the DeviceKeyPress event), and the
DeviceKeyPress event is reported.

The interpretation of the remaining arguments is as for XGrabDevice. The active grab is ter-
minated automatically when the logical state of the device has the specified key released
(independent of the logical state of the modifier keys).

Note that the logical state of a device (as seen by means of the X protocol) may lag the physical
state if device event processing is frozen.

A modifier of AnyModifier is equivalent to issuing the request for all possible modifier combina-
tions (including the combination of no modifiers). It is not required that all modifiers specified
have currently assigned keycodes. A key of AnyKey is equivalent to issuing the request for all
possible keycodes. Otherwise, the key must be in the range specified by min_keycode and
max_keycode in the information returned by the XListInputDevices function. If it is not within
that range, XGrabDeviceKey generates a BadValue error.

A BadAccess error is generated if some other client has issued a XGrabDeviceKey with the
same device and key combination on the same window. When using AnyModifier or AnyKey,
the request fails completely and the X server generates a BadAccess error and no grabs are esta-
blished if there is a conflicting grab for any combination.

XGrabDeviceKey can generate BadDevice, BadAccess, BadMatch, BadWindow, BadClass,
and BadValue errors.

XGrabDeviceKey returns Success upon successful completion of the request.

To release a passive grab of a single key on an extension device, use XUngrabDeviceKey.

8

X Input Extension Library Specification X11, Release 5

int
XUngrabDeviceKey (display, device, keycode, modifiers,

modifier_device, ungrab_window)
Display *display;
XDevice *device;
int keycode;
unsigned int modifiers;
XDevice *modifier_device;
Window ungrab_window;

display Specifies the connection to the X server.

device Specifies the desired device.

keycode Specifies the keycode of the key that is to be ungrabbed. You can pass
either the keycode or AnyKey.

modifiers Specifies the set of keymasks. This mask is the bitwise inclusive OR of
these keymask bits: ShiftMask, LockMask, ControlMask,
Mod1Mask, Mod2Mask, Mod3Mask, Mod4Mask, Mod5Mask.

You can also pass AnyModifier, which is equivalent to issuing the
ungrab key request for all possible modifier combinations (including
the combination of no modifiers).

modifier_device
Specifies the device whose modifiers are to be used. If NULL is
specified, the core X keyboard is used as the modifier_device.

ungrab_window
Specifies the ID of a window associated with the device specified
above.

This function is analogous to the core XUngrabKey function. It releases an explicit passive grab
for a key on an extension input device.

Errors returned by this function: BadDevice, BadWindow, BadValue, BadAlloc, and Bad-
Match.

2.1.5. Passively Grabbing A Button
To establish a passive grab for a single button on an extension device, use XGrabDeviceButton.
The specified device must have previously been opened using the XOpenDevice function, or the
request will fail with a BadDevice error. If the specified device does not support input class But-
tons, the request will fail with a BadMatch error.

9

X Input Extension Library Specification X11, Release 5

int
XGrabDeviceButton (display, device, button, modifiers,

modifier_device, grab_window, owner_events, event_count,
event_list, this_device_mode, other_device_mode)

Display *display;
XDevice *device;
unsigned int button;
unsigned int modifiers;
XDevice *modifier_device;
Window grab_window;
Bool owner_events;
int event_count;
XEventClass *event_list;
int this_device_mode;
int other_device_mode;

display Specifies the connection to the X server.

device Specifies the desired device.

button Specifies the code of the button that is to be grabbed. You can pass
either the button or AnyButton.

modifiers Specifies the set of keymasks. This mask is the bitwise inclusive OR
of these keymask bits: ShiftMask, LockMask, ControlMask,
Mod1Mask, Mod2Mask, Mod3Mask, Mod4Mask, Mod5Mask.

You can also pass AnyModifier, which is equivalent to issuing the
grab request for all possible modifier combinations (including the
combination of no modifiers).

modifier_device
Specifies the device whose modifiers are to be used. If NULL is
specified, the core X keyboard is used as the modifier_device.

grab_windowSpecifies the ID of a window associated with the device specified
above.

owner_eventsSpecifies a boolean value of either True or False.

event_count Specifies the number of elements in the event_list array.

event_list Specifies a list of event classes that indicates which device events are
to be reported to the client.

this_device_mode
Controls further processing of events from this device. You can pass
one of these constants: GrabModeSync or GrabModeAsync.

other_device_mode
Controls further processing of events from all other devices. You can
pass one of these constants: GrabModeSync or GrabModeAsync.

This function is analogous to the core XGrabButton function. It creates an explicit passive grab
for a button on an extension input device. Since the server does not track extension devices, no
cursor is specified with this request. For the same reason, there is no confine_to parameter. The
device must have previously been opened using the XOpenDevice function.

The XGrabDeviceButton function establishes a passive grab on a device. Consequently, in the
future,

10

X Input Extension Library Specification X11, Release 5

g IF the device is not grabbed and the specified button is logically pressed when the specified
modifier keys logically are down (and no other buttons or modifier keys are down),

g AND EITHER the grab window is an ancestor of (or is) the focus window OR the grab win-
dow is a descendent of the focus window and contains the pointer,

g AND a passive grab on the same device and button/ key combination does not exist on any
ancestor of the grab window,

g THEN the device is actively grabbed, as for XGrabDevice, the last-grab time is set to the
time at which the button was pressed (as transmitted in the DeviceButtonPress event), and
the DeviceButtonPress event is reported.

The interpretation of the remaining arguments is as for XGrabDevice. The active grab is ter-
minated automatically when logical state of the device has all buttons released (independent of
the logical state of the modifier keys).

Note that the logical state of a device (as seen by means of the X protocol) may lag the physical
state if device event processing is frozen.

A modifier of AnyModifier is equivalent to issuing the request for all possible modifier combina-
tions (including the combination of no modifiers). It is not required that all modifiers specified
have currently assigned keycodes. A button of AnyButton is equivalent to issuing the request for
all possible buttons. Otherwise, it is not required that the specified button be assigned to a physi-
cal button.

A BadAccess error is generated if some other client has issued a XGrabDeviceButton with the
same device and button combination on the same window. When using AnyModifier or AnyBut-
ton, the request fails completely and the X server generates a BadAccess error and no grabs are
established if there is a conflicting grab for any combination.

XGrabDeviceButton can generate BadDevice, BadMatch, BadAccess, BadWindow, Bad-
Class, and BadValue errors.

To release a passive grab of a button on an extension device, use XUngrabDeviceButton.

int
XUngrabDeviceButton (display, device, button, modifiers,

modifier_device, ungrab_window)
Display *display;
XDevice *device;
unsigned int button;
unsigned int modifiers;
XDevice *modifier_device;
Window ungrab_window;

display Specifies the connection to the X server.

device Specifies the desired device.

button Specifies the code of the button that is to be ungrabbed. You can pass
either a button or AnyButton.

modifiers Specifies the set of keymasks. This mask is the bitwise inclusive OR of
these keymask bits: ShiftMask, LockMask, ControlMask,
Mod1Mask, Mod2Mask, Mod3Mask, Mod4Mask, Mod5Mask.

You can also pass AnyModifier, which is equivalent to issuing the
ungrab key request for all possible modifier combinations (including
the combination of no modifiers).

11

X Input Extension Library Specification X11, Release 5

modifier_device
Specifies the device whose modifiers are to be used. If NULL is
specified, the core X keyboard is used as the modifier_device.

ungrab_window
Specifies the ID of a window associated with the device specified
above.

This function is analogous to the core XUngrabButton function. It releases an explicit passive
grab for a button on an extension device. That device must have previously been opened using
the XOpenDevice function, or a BadDevice error will result.

A modifier of AnyModifier is equivalent to issuing the request for all possible modifier combina-
tions (including the combination of no modifiers).

XUngrabDeviceButton can generate BadDevice, BadMatch, BadWindow, BadValue, and
BadAlloc errors.

2.1.6. Thawing A Device
To allow further events to be processed when a device has been frozen, use XAllowDevi-
ceEvents.

int
XAllowDeviceEvents (display, device, event_mode, time)

Display *display;
XDevice *device;
int event_mode;
Time time;

display Specifies the connection to the X server.

device Specifies the desired device.

event_mode Specifies the event mode. You can pass one of these constants:
AsyncThisDevice, SyncThisDevice, AsyncOtherDevices, ReplayTh-
isDevice, AsyncAll, or SyncAll.

time Specifies the time. This may be either a timestamp expressed in mil-
liseconds, or CurrentTime.

The XAllowDeviceEvents function releases some queued events if the client has caused a device
to freeze. The function has no effect if the specified time is earlier than the last-grab time of the
most recent active grab for the client and device, or if the specified time is later than the current X
server time. The following describes the processing that occurs depending on what constant you
pass to the event_mode argument:

g If the specified device is frozen by the client, event processing for that continues as usual. If
the device is frozen multiple times by the client on behalf of multiple separate grabs,
AsyncThisDevice thaws for all. AsyncThisDevice has no effect if the specified device is not
frozen by the client, but the device need not be grabbed by the client.

g If the specified device is frozen and actively grabbed by the client, event processing for that
device continues normally until the next key or button event is reported to the client. At this
time, the specified device again appears to freeze. However, if the reported event causes the
grab to be released, the specified device does not freeze. SyncThisDevice has no effect if the
specified device is not frozen by the client or is not grabbed by the client.

g If the specified device is actively grabbed by the client and is frozen as the result of an event
having been sent to the client (either from the activation of a GrabDeviceButton or from a
previous AllowDeviceEvents with mode SyncThisDevice, but not from a Grab), the grab is
released and that event is completely reprocessed. This time, however, the request ignores

12

X Input Extension Library Specification X11, Release 5

any passive grabs at or above (towards the root) the grab-window of the grab just released.
The request has no effect if the specified device is not grabbed by the client or if it is not
frozen as the result of an event.

g If the remaining devices are frozen by the client, event processing for them continues as
usual. If the other devices are frozen multiple times by the client on behalf of multiple
separate grabs, AsyncOtherDevices ‘‘thaws’’ for all. AsyncOtherDevices has no effect if the
devices are not frozen by the client, but those devices need not be grabbed by the client.

g If all devices are frozen by the client, event processing (for all devices) continues normally
until the next button or key event is reported to the client for a grabbed device at which time
the devices again appear to freeze. However, if the reported event causes the grab to be
released, then the devices do not freeze (but if any device is still grabbed, then a subsequent
event for it will still cause all devices to freeze). SyncAll has no effect unless all devices are
frozen by the client. If any device is frozen twice by the client on behalf of two separate
grabs, SyncAll "thaws" for both (but a subsequent freeze for SyncAll will only freeze each
device once).

g If all devices are frozen by the client, event processing (for all devices) continues normally.
If any device is frozen multiple times by the client on behalf of multiple separate grabs, Asyn-
cAll "thaws" for all. If any device is frozen twice by the client on behalf of two separate
grabs, AsyncAll "thaws" for both. AsyncAll has no effect unless all devices are frozen by the
client.

AsyncThisDevice, SyncThisDevice, and ReplayThisDevice have no effect on the processing of
events from the remaining devices. AsyncOtherDevices has no effect on the processing of events
from the specified device. When the event_mode is SyncAll or AsyncAll, the device parameter is
ignored.

It is possible for several grabs of different devices (by the same or different clients) to be active
simultaneously. If a device is frozen on behalf of any grab, no event processing is performed for
the device. It is possible for a single device to be frozen because of several grabs. In this case,
the freeze must be released on behalf of each grab before events can again be processed.

Errors returned by this function: BadDevice, BadValue.

2.1.7. Controlling Device Focus
The current focus window for an extension input device can be determined using the XGetDevi-
ceFocus function. Extension devices are focused using the XSetDeviceFocus function in the
same way that the keyboard is focused using the core XSetInputFocus function, except that a
device id is passed as a function parameter. One additional focus state, FollowKeyboard, is pro-
vided for extension devices.

To get the current focus state, revert state, and focus time of an extension device, use XGetDevi-
ceFocus.

int
XGetDeviceFocus (display, device, focus_return, revert_to_return,

focus_time_return)
Display *display;
XDevice *device;
Window *focus_return;
int *revert_to_return;
Time *focus_time_return;

display Specifies the connection to the X server.

13

X Input Extension Library Specification X11, Release 5

device Specifies the desired device.

focus_returnSpecifies the address of a variable into which the server can return the
ID of the window that contains the device focus, or one of the constants
None, PointerRoot, or FollowKeyboard.

revert_to_return
Specifies the address of a variable into which the server can return the
current revert_to status for the device.

focus_time_return
Specifies the address of a variable into which the server can return the
focus time last set for the device.

This function returns the focus state, the revert-to state, and the last-focus-time for an extension
input device.

Errors returned by this function: BadDevice, BadMatch.

To set the focus of an extension device, use XSetDeviceFocus.

int
XSetDeviceFocus (display, device, focus, revert_to, time)

Display *display;
XDevice *device;
Window focus;
int revert_to;
Time time;

display Specifies the connection to the X server.

device Specifies the desired device.

focus Specifies the id of the window to which the device’s focus should be
set. This may be a window id, or PointerRoot, FollowKeyboard, or
None.

revert_to Specifies to which window the focus of the device should revert if the
focus window becomes not viewable. One of the following constants
may be passed: RevertToParent, RevertToPointerRoot, RevertTo-
None, or RevertToFollowKeyboard.

time Specifies the time. You can pass either a timestamp, expressed in mil-
liseconds, or CurrentTime.

This function changes the focus for an extension input device and the last-focus-change-time.
The function has no effect if the specified time is earlier than the last-focus-change-time or is
later than the current X server time. Otherwise, the last-focus-change-time is set to the specified
time. This function causes the X server to generate DeviceFocusIn and DeviceFocusOut events.

The action taken by the server when this function is requested depends on the value of the focus
argument:

g If the focus argument is None, all input events from this device will be discarded until a new
focus window is set. In this case, the revert_to argument is ignored.

g If a window ID is assigned to the focus argument, it becomes the focus window of the device.
If an input event from the device would normally be reported to this window or to one of its
inferiors, the event is reported normally. Otherwise, the event is reported relative to the focus
window.

14

X Input Extension Library Specification X11, Release 5

g If you assign PointerRoot to the focus argument, the focus window is dynamically taken to
be the root window of whatever screen the pointer is on at each input event. In this case, the
revert_to argument is ignored.

g If you assign FollowKeyboard to the focus argument, the focus window is dynamically taken
to be the same as the focus of the X keyboard at each input event.

The specified focus window must be viewable at the time XSetDeviceFocus is called. Other-
wise, it generates a BadMatch error. If the focus window later becomes not viewable, the X
server evaluates the revert_to argument to determine the new focus window.

g If you assign RevertToParent to the revert_to argument, the focus reverts to the parent (or
the closest viewable ancestor), and the new revert_to value is taken to be RevertToNone.

g If you assign RevertToPointerRoot, RevertToFollowKeyboard, or RevertToNone to the
revert_to argument, the focus reverts to that value.

When the focus reverts, the X server generates DeviceFocusIn and DeviceFocusOut events, but
the last-focus-change time is not affected.

Errors returned by this function: BadDevice, BadMatch, BadValue, and BadWindow.

2.1.8. Controlling Device Feedback
To determine the current feedback settings of an extension input device, use XGetFeedbackCon-
trol.

XFeedbackState
*XGetFeedbackControl (display, device, num_feedbacks_return)

Display *display;
XDevice *device;
int *num_feedbacks_return;

display Specifies the connection to the X server.

device Specifies the desired device.

num_feedbacks_return
Returns the number of feedbacks supported by the device.

g This function returns a list of FeedbackState structures that describe the feedbacks supported
by the specified device. There is an XFeedbackState structure for each clase of feedback.
These are of variable length, but the first three fields are common to all. The common fields
are as follows:

typedef struct {
XID class;
int length;
XID id;

} XFeedbackState;

where class identifies the class of feedback. The class may be compared to constants defined in
the file XI.h. Currently defined feedback constants include KbdFeedbackClass, PtrFeed-
backClass, StringFeedbackClass, IntegerFeedbackClass, LedFeedbackClass, and BellFeed-
backClass.

The length specifies the length of the FeedbackState structure and can be used by clients to
traverse the list.

15

X Input Extension Library Specification X11, Release 5

The id uniquely identifies a feedback for a given device and class. This allows a device to sup-
port more than one feedback of the same class. Other feedbacks of other classes or devices may
have the same id.

g Those feedbacks equivalent to those supported by the core keyboard are reported in class
KbdFeedback using the XKbdFeedbackState structure. The members of that structure are
as follows:

typedef struct {
XID class;
int length;
XID id;
int click;
int percent;
int pitch;
int duration;
int led_mask;
int global_auto_repeat;
char auto_repeats[32];

} XKbdFeedbackState;

The fields of the XKbdFeedbackState structure report the current state of the feedback:

g click specifies the key-click volume, and has a value in the range 0 (off) to 100 (loud).

g percent specifies the bell volume, and has a value in the range 0 (off) to 100 (loud).

g pitch specifies the bell pitch in Hz. The range of the value is implementation-dependent.

g duration specifies the duration in milliseconds of the bell.

g led_mask is a bit mask that describes the current state of up to 32 LEDs. A value of 1 in a bit
indicates that the corresponding LED is on.

g global_auto_repeat has a value of AutoRepeatModeOn or AutoRepeatModeOff.
g The auto_repeats member is a bit vector. Each bit set to 1 indicates that auto-repeat is

enabled for the corresponding key. The vector is represented as 32 bytes. Byte N (from 0)
contains the bits for keys 8N to 8N + 7, with the least significant bit int the byte representing
key 8N. Those feedbacks equivalent to those supported by the core pointer are reported in
class PtrFeedback using he XPtrFeedbackState structure. The members of that structure
are as follows:

typedef struct {
XID class;
int length;
XID id;
int accelNum;
int accelDenom;
int threshold;

} XPtrFeedbackState;

The fields of the XPtrFeedbackState structure report the current state of the feedback:

g accelNum returns the numerator for the acceleration multiplier.

g accelDenom returns the denominator for the acceleration multiplier.

16

X Input Extension Library Specification X11, Release 5

g accelDenom returns the threshold for the acceleration.

Integer feedbacks are those capable of displaying integer numbers. The minimum and maximum
values that they can display are reported.

typedef struct {
XID class;
int length;
XID id;
int resolution;
int minVal;
int maxVal;

} XIntegerFeedbackState;

The fields of the XIntegerFeedbackState structure report the capabilities of the feedback:

g resolution specifies the number of digits that the feedback can display.

g minVal specifies the minimum value that the feedback can display.

g maxVal specifies the maximum value that the feedback can display. String feedbacks are
those that can display character information. Clients set these feedbacks by passing a list of
KeySyms to be displayed. The XGetFeedbackControl function returns the set of key sym-
bols that the feedback can display, as well as the maximum number of symbols that can be
displayed.

typedef struct {
XID class;
int length;
XID id;
int max_symbols;
int num_syms_supported;
KeySym *syms_supported;

} XStringFeedbackState;

The fields of the XStringFeedbackState structure report the capabilities of the feedback:

g max_symbols specifies the maximum number of symbols that can be displayed.

g syms_supported is a pointer to the list of supported symbols.

g num_syms_supported specifies the length of the list of supported symbols. Bell feedbacks
are those that can generate a sound. Some implementations may support a bell as part of a
KbdFeedback feedback. Class BellFeedback is provided for implementations that do not
choose to do so, and for devices that support multiple feedbacks that can produce sound. The
meaning of the fields is the same as that of the corresponding fields in the XKbdFeedback-
State structure.

17

X Input Extension Library Specification X11, Release 5

typedef struct {
XID class;
int length;
XID id;
int percent;
int pitch;
int duration;

} XBellFeedbackState;

Led feedbacks are those that can generate a light. Up to 32 lights per feedback are supported.
Each bit in led_mask corresponds to one supported light, and the corresponding bit in led_values
indicates whether that light is currently on (1) or off (0). Some implementations may support
leds as part of a KbdFeedback feedback. Class LedFeedback is provided for implementations
that do not choose to do so, and for devices that support multiple led feedbacks.

typedef struct {
XID class;
int length;
XID id;
Mask led_values;
Mask led_mask;

} XLedFeedbackState;

Errors returned by this function: BadDevice, BadMatch.

To free the information returned by the XGetFeedbackControl function, use XFreeFeedback-
List.

void
XFreeFeedbackList (list)

XFeedbackState *list;

list Specifies the pointer to the XFeedbackState structure returned by
a previous call to XGetFeedbackControl.

This function frees the list of feedback control information.

To change the settings of a feedback on an extension device, use XChangeFeedbackControl.
This function modifies the current control values of the specified feedback using information
passed in the appropriate XFeedbackControl structure for the feedback. Which values are
modified depends on the valuemask passed.

int
XChangeFeedbackControl (display, device, valuemask, value)

Display *display;
XDevice *device;
unsigned long valuemask;
XFeedbackControl *value;

18

X Input Extension Library Specification X11, Release 5

display Specifies the connection to the X server.

device Specifies the desired device.

valuemask Specifies one value for each bit in the mask (least to most significant
bit). The values are associated with the feedbacks for the specified dev-
ice.

value Specifies a pointer to the XFeedbackControl structure.

This function controls the device characteristics described by the XFeedbackControl structure.
There is an XFeedbackControl structure for each clase of feedback. These are of variable length,
but the first two fields are common to all. The common fields are as follows:

typedef struct {
XID class;
int length;
XID id;

} XFeedbackControl;

Feedback class KbdFeedback controls feedbacks equivalent to those provided by the core key-
board using the KbdFeedbackControl structure. The members of that structure are:

typedef struct {
XID class;
int length;
XID id;
int click;
int percent;
int pitch;
int duration;
int led_mask;
int led_value;
int key;
int auto_repeat_mode;

} XKbdFeedbackControl;

This class controls the device characteristics described by the XKbdFeedbackControl structure.
These include the key_click_percent, global_auto_repeat and individual key auto-repeat. Valid
modes are AutoRepeatModeOn, AutoRepeatModeOff, AutoRepeatModeDefault.
Valid masks are as follows:

#define DvKeyClickPercent (1L << 0)
#define DvPercent (1L << 1)
#define DvPitch (1L << 2)
#define DvDuration (1L << 3)
#define DvLed (1L << 4)
#define DvLedMode (1L << 5)
#define DvKey (1L << 6)
#define DvAutoRepeatMode (1L << 7)

Errors returned by this function: BadDevice, BadMatch, BadValue.

Feedback class PtrFeedback controls feedbacks equivalent to those provided by the core pointer
using the PtrFeedbackControl structure. The members of that structure are:

19

X Input Extension Library Specification X11, Release 5

typedef struct {
XID class;
int length;
XID id;
int accelNum;
int accelDenom;
int threshold;

} XPtrFeedbackControl;

Which values are modified depends on the valuemask passed.

Valid masks are as follows:

#define DvAccelnum (1L << 0)
#define DvAccelDenom (1L << 1)
#define DvThreshold (1L << 2)

The acceleration, expressed as a fraction, is a multiplier for movement. For example, specifying
3/1 means the device moves three times as fast as normal. The fraction may be rounded arbi-
trarily by the X server. Acceleration only takes effect if the device moves more than threshold
pixels at once and only applies to the amount beyond the value in the threshold argument. Set-
ting a value to -1 restores the default. The values of the accelNumerator and threshold fields must
be nonzero for the pointer values to be set. Otherwise, the parameters will be unchanged. Nega-
tive values generate a BadValue error, as does a zero value for the accelDenominator field.

This request fails with a BadMatch error if the specified device is not currently reporting relative
motion. If a device that is capable of reporting both relative and absolute motion has its mode
changed from Relative to Absolute by an XSetDeviceMode request, valuator control values will
be ignored by the server while the device is in that mode.

Feedback class IntegerFeedback controls integer feedbacks displayed on input devices, using
the IntegerFeedbackControl structure. The members of that structure are:

typedef struct {
XID class;
int length;
XID id;
int int_to_display;

} XIntegerFeedbackControl;

Valid masks are as follows:

#define DvInteger (1L << 0)

Feedback class StringFeedback controls string feedbacks displayed on input devices, using the
StringFeedbackControl structure. The members of that structure are:

20

X Input Extension Library Specification X11, Release 5

typedef struct {
XID class;
int length;
XID id;
int num_keysyms;
KeySym *syms_to_display;

} XStringFeedbackControl;

Valid masks are as follows:

#define DvString (1L << 0)

Feedback class BellFeedback controls a bell on an input device, using the BellFeedbackControl
structure. The members of that structure are:

typedef struct {
XID class;
int length;
XID id;
int percent;
int pitch;
int duration;

} XBellFeedbackControl;

Valid masks are as follows:

#define DvPercent (1L << 1)
#define DvPitch (1L << 2)
#define DvDuration (1L << 3)

To ring a bell on an extension input device, use the XDeviceBell protocol request.

Feedback class LedFeedback controls lights on an input device, using the LedFeedbackControl
structure. The members of that structure are:

typedef struct {
XID class;
int length;
XID id;
int led_mask;
int led_values;

} XLedFeedbackControl;

Valid masks are as follows:

#define DvLed (1L << 4)
#define DvLedMode (1L << 5)

Errors returned by this function: BadDevice, BadMatch, BadFeedBack.

21

X Input Extension Library Specification X11, Release 5

2.1.9. Ringing a Bell on an Input Device
To ring a bell on a extension input device, use XDeviceBell.

int
XDeviceBell (display, device, feedbackclass, feedbackid, percent)

Display *display;
XDevice *device;
XID feedbackclass, feedbackid;
int percent;

display Specifies the connection to the X server.

device Specifies the desired device.

feedbackclassSpecifies the feedbackclass. Valid values are KbdFeedbackClass and
BellFeedbackClass.

feedbackid Specifies the id of the feedback that has the bell.

percent Specifies the volume in the range -100 (quiet) to 100 percent (loud).

This function is analogous to the core XBell function. It rings the specified bell on the specified
input device feedback, using the specified volume. The specified volume is relative to the base
volume for the feedback. If the value for the percent argument is not in the range -100 to 100
inclusive, a BadValue error results. The volume at which the bell rings when the percent argu-
ment is nonnegative is:

base - [(base * percent) / 100] + percent

The volume at which the bell rings when the percent argument is negative is:

base + [(base * percent) / 100]

To change the base volume of the bell, use XChangeFeedbackControl.
Errors returned by this function: BadDevice, BadValue.

2.1.10. Controlling Device Encoding
To get the key mapping of an extension device that supports input class Keys, use XGetDevi-
ceKeyMapping.

KeySym
*XGetDeviceKeyMapping (display, device, first_keycode_wanted,

keycode_count, keysyms_per_keycode_return)
Display *display;
XDevice *device;
KeyCode first_keycode_wanted;
int keycode_count;
int *keysyms_per_keycode_return;

display Specifies the connection to the X server.

device Specifies the desired device.

first_keycode_wanted
Specifies the first keycode that is to be returned.

22

X Input Extension Library Specification X11, Release 5

keycode_count
Specifies the number of keycodes that are to be returned.

keysyms_per_keycode_return
Returns the number of keysyms per keycode.

This function is analogous to the core XGetKeyboardMapping function. It returns the symbols
for the specified number of keycodes for the specified extension device.

XGetDeviceKeyMapping returns the symbols for the specified number of keycodes for the
specified extension device, starting with the specified keycode. The first_keycode_wanted must
be greater than or equal to min-keycode as returned by the XListInputDevices request (else a
BadValue error), and

first_keycode_wanted + keycode_count − 1

must be less than or equal to max-keycode as returned by the XListInputDevices request (else a
BadValue error).

The number of elements in the keysyms list is

keycode_count * keysyms_per_keycode_return

and KEYSYM number N (counting from zero) for keycode K has an index (counting from zero)
of

(K − first_keycode_wanted) * keysyms_per_keycode_return + N

in keysyms. The keysyms_per_keycode_return value is chosen arbitrarily by the server to be
large enough to report all requested symbols. A special KEYSYM value of NoSymbol is used to
fill in unused elements for individual keycodes.

You should use XFree to free the data returned by this function.

If the specified device has not first been opened by this client via XOpenDevice, this request will
fail with a BadDevice error. If that device does not support input class Keys, this request will fail
with a BadMatch error.

Errors returned by this function: BadDevice, BadMatch, BadValue.

To change the keyboard mapping of an extension device that supports input class Keys, use
XChangeDeviceKeyMapping.

int
XChangeDeviceKeyMapping (display, device, first_keycode,

keysyms_per_keycode, keysyms, num_codes)
Display *display;
XDevice *device;
int first_keycode;
int keysyms_per_keycode;
KeySym *keysyms;
int num_codes;

display Specifies the connection to the X server.

device Specifies the desired device.

first_keycodeSpecifies the first keycode that is to be changed.

23

X Input Extension Library Specification X11, Release 5

keysyms_per_keycode
Specifies the keysyms that are to be used.

keysyms Specifies a pointer to an array of keysyms.

num_codes Specifies the number of keycodes that are to be changed.

This function is analogous to the core XChangeKeyboardMapping function. It defines the sym-
bols for the specified number of keycodes for the specified extension keyboard device.

If the specified device has not first been opened by this client via XOpenDevice, this request will
fail with a BadDevice error. If the specified device does not support input class Keys, this
request will fail with a BadMatch error.

The number of elements in the keysyms list must be a multiple of keysyms_per_keycode. Other-
wise, XChangeDeviceKeyMapping generates a BadLength error. The specified first_keycode
must be greater than or equal to the min_keycode value returned by the ListInputDevices
request, or this request will fail with a BadValue error. In addition, if the following expression is
not less than the max_keycode value returned by the ListInputDevices request, the request will
fail with a BadValue error:

first_keycode + (num_codes / keysyms_per_keycode) - 1

Errors returned by this function: BadDevice, BadMatch, BadValue, BadAlloc.

To obtain the keycodes that are used as modifiers on an extension device that supports input class
Keys, use XGetDeviceModifierMapping.

XModifierKeymap
*XGetDeviceModifierMapping (display, device)

Display *display;
XDevice *device;

display Specifies the connection to the X server.

device Specifies the desired device.

This function is analogous to the core XGetModifierMapping function. The
XGetDeviceModifierMapping function returns a newly created XModifierKeymap structure
that contains the keys being used as modifiers for the specified device. The structure should be
freed after use with XFreeModifierMapping. If only zero values appear in the set for any
modifier, that modifier is disabled.

Errors returned by this function: BadDevice, BadMatch.

To set which keycodes that are to be used as modifiers for an extension device, use
XSetDeviceModifierMapping.

int
XSetDeviceModifierMapping (display, device, modmap)

Display *display;
XDevice *device;
XModifierKeymap *modmap;

24

X Input Extension Library Specification X11, Release 5

display Specifies the connection to the X server.

device Specifies the desired device.

modmap Specifies a pointer to the XModifierKeymap structure.

This function is analogous to the core XSetModifierMapping function. The
XSetDeviceModifierMapping function specifies the keycodes of the keys, if any, that are to be
used as modifiers. A zero value means that no key should be used. No two arguments can have
the same nonzero keycode value. Otherwise, XSetDeviceModifierMapping generates a Bad-
Value error. There are eight modifiers, and the modifiermap member of the XModifierKeymap
structure contains eight sets of max_keypermod keycodes, one for each modifier in the order
Shift, Lock, Control, Mod1, Mod2, Mod3, Mod4, and Mod5. Only nonzero keycodes have mean-
ing in each set, and zero keycodes are ignored. In addition, all of the nonzero keycodes must be
in the range specified by min_keycode and max_keycode reported by the XListInputDevices
function. Otherwise, XSetModifierMapping generates a BadValue error. No keycode may
appear twice in the entire map. Otherwise, it generates a BadValue error.

A X server can impose restrictions on how modifiers can be changed, for example, if certain keys
do not generate up transitions in hardware or if multiple modifier keys are not supported. If some
such restriction is violated, the status reply is MappingFailed, and none of the modifiers are
changed. If the new keycodes specified for a modifier differ from those currently defined and any
(current or new) keys for that modifier are in the logically down state, the status reply is Map-
pingBusy, and none of the modifiers are changed. XSetModifierMapping generates a Devi-
ceMappingNotify event on a MappingSuccess status.

XSetDeviceModifierMapping can generate BadDevice, BadMatch, BadAlloc, and BadValue
errors.

2.1.11. Controlling Button Mapping
To set the mapping of the buttons on an extension device, use XSetDeviceButtonMapping.

int
XSetDeviceButtonMapping (display, device, map, nmap)

Display *display;
XDevice *device;
unsigned char map[];
int nmap;

display Specifies the connection to the X server.

device Specifies the desired device.

map Specifies the mapping list.

nmap Specifies the number of items in the mapping list.

The XSetDeviceButtonMapping function sets the mapping of the buttons on an extension dev-
ice. If it succeeds, the X server generates a DeviceMappingNotify event, and XSetDeviceBut-
tonMapping returns MappingSuccess. Elements of the list are indexed starting from one. The
length of the list must be the same as XGetDeviceButtonMapping would return, or a BadValue
error results. The index is a button number, and the element of the list defines the effective
number. A zero element disables a button, and elements are not restricted in value by the number
of physical buttons. However, no two elements can have the same nonzero value, or a BadValue
error results. If any of the buttons to be altered are logically in the down state, XSetDeviceBut-
tonMapping returns MappingBusy, and the mapping is not changed.

25

X Input Extension Library Specification X11, Release 5

XSetDeviceButtonMapping can generate BadDevice, BadMatch, and BadValue errors.

To get the button mapping, use XGetDeviceButtonMapping.

int
XGetDeviceButtonMapping (display, device, map_return, nmap)

Display *display;
XDevice *device;
unsigned char map_return[];
int nmap;

display Specifies the connection to the X server.

device Specifies the desired device.

map_return Specifies the mapping list.

nmap Specifies the number of items in the mapping list.

The XGetDeviceButtonMapping function returns the current mapping of the specified extension
device. Elements of the list are indexed starting from one. XGetDeviceButtonMapping returns
the number of physical buttons actually on the pointer. The nominal mapping for the buttons is
the identity mapping: map[i]=i. The nmap argument specifies the length of the array where the
button mapping is returned, and only the first nmap elements are returned in map_return.

Errors returned by this function: BadDevice, BadMatch.

2.1.12. Obtaining The State Of A Device
To obtain information that describes the state of the keys, buttons and valuators of an extension
device, use XQueryDeviceState.

XDeviceState
*XQueryDeviceState (display, device)

Display *display;
XDevice *device;

display Specifies the connection to the X server.

device Specifies the desired device.

The XQueryDeviceState function returns a pointer to an XDeviceState structure. This structure
points to a list of structures that describe the state of the keys, buttons, and valuators on the dev-
ice.

typedef struct {
XID device_id;
int num_classes;
XInputClass *data;

} XDeviceState;

26

X Input Extension Library Specification X11, Release 5

g The structures are of variable length, but the first two fields are common to all. The common
fields are as follows:

typedef struct
{
unsigned char class;
unsigned char length;
} XInputClass;

The class field contains a class identifier. This identifier can be compared with constants defined
in the file XI.h. Currently defined constants are: KeyClass, ButtonClass, and ValuatorClass.

The length field contains the length of the structure and can be used by clients to traverse the list.

g The XValuatorState structure describes the current state of the valuators on the device. The
num_valuators field contains the number of valuators on the device. The mode field is a
mask whose bits report the data mode and other state information for the device. The follow-
ing bits are currently defined:

DeviceMode 1 << 0 Relative = 0, Absolute = 1
ProximityState 1 << 1 InProximity = 0, OutOfProximity = 1

The valuators field contains a pointer to an array of integers that describe the current value of
the valuators. If the mode is Relative, these values are undefined.

typedef struct {
unsigned char class;
unsigned char length;
unsigned char num_valuators;
unsigned char mode;
int *valuators;

} XValuatorState;

g The XKeyState structure describes the current state of the keys on the device. Byte N (from
0) contains the bits for key 8N to 8N+7 with the least significant bit in the byte representing
key 8N.

typedef struct {
unsigned char class;
unsigned char length;
short num_keys;
char keys[32];

} XKeyState;

g The XButtonState structure describes the current state of the buttons on the device. Byte N
(from 0) contains the bits for button 8N to 8N+7 with the least significant bit in the byte
representing button 8N.

27

X Input Extension Library Specification X11, Release 5

typedef struct {
unsigned char class;
unsigned char length;
short num_buttons;
char buttons[32];

} XButtonState;

You should use XFreeDeviceState to free the data returned by this function.

Errors returned by this function: BadDevice.

void
XFreeDeviceState (state)

XDeviceState *state;

state Specifies the pointer to the XDeviceState data returned by a previous
call to XQueryDeviceState.

This function frees the device state data.

2.2. Events and Event-Handling Functions
The input extension creates input events analogous to the core input events. These extension
input events are generated by manipulating one of the extension input devices. The following
sections describe these events and explain how a client program can receive them.

2.2.1. Event Types
Event types are integer numbers that a client can use to determine what kind of event it has
received. The client compares the type field of the event structure with known event types to
make this determination.

The core input event types are constants and are defined in the header file <X11/X.h>. Extension
event types are not constants. Instead, they are dynamically allocated by the extension’s request
to the X server when the extension is initialized. Because of this, extension event types must be
obtained by the client from the server.

The client program determines the event type for an extension event by using the information
returned by the XOpenDevice request. This type can then be used for comparison with the type
field of events received by the client.

Extension events propagate up the window hierarchy in the same manner as core events. If a
window is not interested in an extension event, it usually propagates to the closest ancestor that is
interested, unless the dont_propagate list prohibits it. Grabs of extension devices may alter the
set of windows that receive a particular extension event.

The following table lists the event category and its associated event type or types.

28

X Input Extension Library Specification X11, Release 5

iii
Event Category Event Typeii

Device key events DeviceKeyPress,
DeviceKeyReleaseii

Device motion events DeviceButtonPress,
DeviceButtonRelease,
DeviceMotionNotifyii

Device input focus events DeviceFocusIn,
DeviceFocusOutii

Device state notification events DeviceStateNotifyii
Device proximity events ProximityIn,

ProximityOutii
Device mapping events DeviceMappingNotifyii
Device change events ChangeDeviceNotifyiic

c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

2.2.2. Event Classes
Event classes are integer numbers that are used in the same way as the core event masks. They
are used by a client program to indicate to the server which events that client program wishes to
receive.

The core input event masks are constants and are defined in the header file <X11/X.h>. Exten-
sion event classes are not constants. Instead, they are dynamically allocated by the extension’s
request to the X server when the extension is initialized. Because of this, extension event classes
must be obtained by the client from the server.

The event class for an extension event and device is obtained from information returned by the
XOpenDevice function. This class can then be used in an XSelectExtensionEvent request to ask
that events of that type from that device be sent to the client program.

For DeviceButtonPress events, the client may specify whether or not an implicit passive grab
should be done when the button is pressed. If the client wants to guarantee that it will receive a
DeviceButtonRelease event for each DeviceButtonPress event it receives, it should specify the
DeviceButtonPressGrab class in addition to the DeviceButtonPress class. This restricts the
client in that only one client at a time may request DeviceButtonPress events from the same dev-
ice and window if any client specifies this class.

If any client has specified the DeviceButtonPressGrab class, any requests by any other client
that specify the same device and window and specify either DeviceButtonPress or DeviceBut-
tonPressGrab will cause an Access error to be generated.

If only the DeviceButtonPress class is specified, no implicit passive grab will be done when a
button is pressed on the device. Multiple clients may use this class to specify the same device
and window combination.

The client may also select DeviceMotion events only when a button is down. It does this by
specifying the event classes DeviceButton1Motion through DeviceButton5Motion. An input
device will only support as many button motion classes as it has buttons.

2.2.3. Event Structures
Each extension event type has a corresponding structure declared in
<X11/extensions/XInput.h>. All event structures have the following members:

type Set to the event type number that uniquely identifies it. For example,
when the X server reports a DeviceKeyPress event to a client applica-
tion, it sends an XDeviceKeyPressEvent structure.

display Set to a pointer to a structure that defines the display the event was
read on.

29

X Input Extension Library Specification X11, Release 5

send_event Set to True if the event came from an XSendEvent request.

serial Set from the serial number reported in the protocol but expanded from
the 16-bit least-significant bits to a full 32-bit value.

Extension event structures report the current position of the X pointer. In addition, if the device
reports motion data and is reporting absolute data, the current value of any valuators the device
contains is also reported.

2.2.3.1. Device Key Events
Key events from extension devices contain all the information that is contained in a key event
from the X keyboard. In addition, they contain a device id and report the current value of any
valuators on the device, if that device is reporting absolute data. If data for more than six valua-
tors is being reported, more than one key event will be sent. The axes_count field contains the
number of axes that are being reported. The server sends as many of these events as are needed
to report the device data. Each event contains the total number of axes reported in the axes_count
field, and the first axis reported in the current event in the first_axis field. If the device supports
input class Valuators, but is not reporting absolute mode data, the axes_count field contains 0.

The location reported in the x,y and x_root,y_root fields is the location of the core X pointer.

The XDeviceKeyEvent structure is defined as follows:

typedef struct

{

int type; /* of event */

unsigned long serial; /* # of last request processed */

Bool send_event; /* true if from SendEvent request */

Display *display; /* Display the event was read from */

Window window; /* "event" window reported relative to */

XID deviceid;

Window root; /* root window event occurred on */

Window subwindow; /* child window */

Time time; /* milliseconds */

int x, y; /* x, y coordinates in event window */

int x_root; /* coordinates relative to root */

int y_root; /* coordinates relative to root */

unsigned int state; /* key or button mask */

unsigned int keycode; /* detail */

Bool same_screen; /* same screen flag */

unsigned char axes_count;

unsigned char first_axis;

unsigned int device_state; /* device key or button mask */

int axis_data[6];

} XDeviceKeyEvent;

typedef XDeviceKeyEvent XDeviceKeyPressedEvent;

typedef XDeviceKeyEvent XDeviceKeyReleasedEvent;

2.2.3.2. Device Button Events
Button events from extension devices contain all the information that is contained in a button
event from the X pointer. In addition, they contain a device id and report the current value of any
valuators on the device, if that device is reporting absolute data. If data for more than six valua-
tors is being reported, more than one button event may be sent. The axes_count field contains the
number of axes that are being reported. The server sends as many of these events as are needed

30

X Input Extension Library Specification X11, Release 5

to report the device data. Each event contains the total number of axes reported in the axes_count
field, and the first axis reported in the current event in the first_axis field. If the device supports
input class Valuators, but is not reporting absolute mode data, the axes_count field contains 0.

The location reported in the x,y and x_root,y_root fields is the location of the core X pointer.

typedef struct {

int type; /* of event */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if from a SendEvent request */

Display *display; /* Display the event was read from */

Window window; /* "event" window reported relative to */

XID deviceid;

Window root; /* root window that the event occurred on */

Window subwindow; /* child window */

Time time; /* milliseconds */

int x, y; /* x, y coordinates in event window */

int x_root; /* coordinates relative to root */

int y_root; /* coordinates relative to root */

unsigned int state; /* key or button mask */

unsigned int button; /* detail */

Bool same_screen; /* same screen flag */

unsigned char axes_count;

unsigned char first_axis;

unsigned int device_state; /* device key or button mask */

int axis_data[6];

} XDeviceButtonEvent;

typedef XDeviceButtonEvent XDeviceButtonPressedEvent;

typedef XDeviceButtonEvent XDeviceButtonReleasedEvent;

2.2.3.3. Device Motion Events
Motion events from extension devices contain all the information that is contained in a motion
event from the X pointer. In addition, they contain a device id and report the current value of any
valuators on the device.

The location reported in the x,y and x_root,y_root fields is the location of the core X pointer, and
so is 2-dimensional.

Extension motion devices may report motion data for a variable number of axes. The axes_count
field contains the number of axes that are being reported. The server sends as many of these
events as are needed to report the device data. Each event contains the total number of axes
reported in the axes_count field, and the first axis reported in the current event in the first_axis
field.

31

X Input Extension Library Specification X11, Release 5

typedef struct

{

int type; /* of event */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if from a SendEvent request */

Display *display; /* Display the event was read from */

Window window; /* "event" window reported relative to */

XID deviceid;

Window root; /* root window that the event occurred on */

Window subwindow; /* child window */

Time time; /* milliseconds */

int x, y; /* x, y coordinates in event window */

int x_root; /* coordinates relative to root */

int y_root; /* coordinates relative to root */

unsigned int state; /* key or button mask */

char is_hint; /* detail */

Bool same_screen; /* same screen flag */

unsigned int device_state; /* device key or button mask */

unsigned char axes_count;

unsigned char first_axis;

int axis_data[6];

} XDeviceMotionEvent;

2.2.3.4. Device Focus Events
These events are equivalent to the core focus events. They contain the same information, with
the addition of a device id to identify which device has had a focus change, and a timestamp.

DeviceFocusIn and DeviceFocusOut events are generated for focus changes of extension dev-
ices in the same manner as core focus events are generated.

32

X Input Extension Library Specification X11, Release 5

typedef struct

{

int type; /* of event */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */

Display *display; /* Display the event was read from */

Window window; /* "event" window it is reported relative to */

XID deviceid;

int mode; /* NotifyNormal, NotifyGrab, NotifyUngrab */

int detail;

/*

* NotifyAncestor, NotifyVirtual, NotifyInferior,

* NotifyNonLinear,NotifyNonLinearVirtual, NotifyPointer,

* NotifyPointerRoot, NotifyDetailNone

*/

Time time;

} XDeviceFocusChangeEvent;

typedef XDeviceFocusChangeEvent XDeviceFocusInEvent;

typedef XDeviceFocusChangeEvent XDeviceFocusOutEvent;

2.2.3.5. Device StateNotify Event
This event is analogous to the core keymap event, but reports the current state of the device for
each input class that it supports. It is generated after every DeviceFocusIn event and EnterNo-
tify event and is delivered to clients who have selected XDeviceStateNotify events.

If the device supports input class Valuators, the mode field in the XValuatorStatus structure is a
bitmask that reports the device mode, proximity state and other state information. The following
bits are currently defined:

0x01 Relative = 0, Absolute = 1
0x02 InProximity = 0, OutOfProximity = 1

If the device supports more valuators than can be reported in a single XEvent, multiple XDevi-
ceStateNotify events will be generated.

33

X Input Extension Library Specification X11, Release 5

typedef struct

{

unsigned char class;

unsigned char length;

} XInputClass;

typedef struct {

int type;

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */

Display *display; /* Display the event was read from */

Window window;

XID deviceid;

Time time;

int num_classes;

char data[64];

} XDeviceStateNotifyEvent;

typedef struct {

unsigned char class;

unsigned char length;

unsigned char num_valuators;

unsigned char mode;

int valuators[6];

} XValuatorStatus;

typedef struct {

unsigned char class;

unsigned char length;

short num_keys;

char keys[32];

} XKeyStatus;

typedef struct {

unsigned char class;

unsigned char length;

short num_buttons;

char buttons[32];

} XButtonStatus;

2.2.3.6. Device Mapping Event
This event is equivalent to the core MappingNotify event. It notifies client programs when the
mapping of keys, modifiers, or buttons on an extension device has changed.

34

X Input Extension Library Specification X11, Release 5

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
XID deviceid;
Time time;
int request;
int first_keycode;
int count;

} XDeviceMappingEvent;

2.2.3.7. ChangeDeviceNotify Event
This event has no equivalent in the core protocol. It notifies client programs when one of the core
devices has been changed.

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
XID deviceid;
Time time;
int request;

} XChangeDeviceNotifyEvent;

2.2.3.8. Proximity Events
These events have no equivalent in the core protocol. Some input devices such as graphics
tablets or touchscreens may send these events to indicate that a stylus has moved into or out of
contact with a positional sensing surface.

The event contains the current value of any valuators on the device, if that device is reporting
absolute data. If data for more than six valuators is being reported, more than one proximity
event may be sent. The axes_count field contains the number of axes that are being reported.
The server sends as many of these events as are needed to report the device data. Each event con-
tains the total number of axes reported in the axes_count field, and the first axis reported in the
current event in the first_axis field. If the device supports input class Valuators, but is not
reporting absolute mode data, the axes_count field contains 0.

35

X Input Extension Library Specification X11, Release 5

typedef struct

{

int type; /* ProximityIn or ProximityOut */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */

Display *display; /* Display the event was read from */

Window window;

XID deviceid;

Window root;

Window subwindow;

Time time;

int x, y;

int x_root, y_root;

unsigned int state;

Bool same_screen;

unsigned char axes_count;

unsigned char first_axis;

unsigned int device_state; /* device key or button mask */

int axis_data[6];

} XProximityNotifyEvent;

typedef XProximityNotifyEvent XProximityInEvent;

typedef XProximityNotifyEvent XProximityOutEvent;

2.2.4. Determining The Extension Version

XExtensionVersion
*XGetExtensionVersion (display, name)

Display *display;
char *name;

display Specifies the connection to the X server.

name Specifies the name of the desired extension.

This function allows a client to determine if a server supports the desired version of the input
extension.

The XExtensionVersion structure returns information about the version of the extension sup-
ported by the server. The structure is defined as follows:

typedef struct
{
Bool present;
short major_version;
short minor_version;
} XExtensionVersion;

The major and minor versions can be compared with constants defined in the header file XI.h.
Each version is a superset of the previous versions.

36

X Input Extension Library Specification X11, Release 5

You should use XFree to free the data returned by this function.

2.2.5. Listing Available Devices
A client program that wishes to access a specific device must first determine whether that device
is connected to the X server. This is done through the XListInputDevices function, which will
return a list of all devices that can be opened by the X server. The client program can use one of
the names defined in the XI.h header file in an XInternAtom request, to determine the device type
of the desired device. This type can then be compared with the device types returned by the
XListInputDevices request.

XDeviceInfo
*XListInputDevices (display, ndevices)

Display *display;
int *ndevices; /* RETURN */

display Specifies the connection to the X server.

ndevices Specifies the address of a variable into which the server can return the
number of input devices available to the X server.

This function allows a client to determine which devices are available for X input and informa-
tion about those devices. An array of XDeviceInfo structures is returned, with one element in the
array for each device. The number of devices is returned in the ndevices argument.

The X pointer device and X keyboard device are reported, as well as all available extension input
devices. The use field of the XDeviceInfo structure specifies the current use of the device. If the
value of this field is IsXPointer, the device is the X pointer device. If the value is IsXKeyboard,
the device is the X keyboard device. If the value is IsXExtensionDevice, the device is available
for use as an extension input device.

Each XDeviceInfo entry contains a pointer to a list of structures that describe the characteristics
of each class of input supported by that device. The num_classes field contains the number of
entries in that list.

If the device supports input class Valuators, one of the structures pointed to by the XDeviceInfo
structure will be an XValuatorInfo structure. The axes field of that structure contains the
address of an array of XAxisInfo structures. There is one element in this array for each axis of
motion reported by the device. The number of elements in this array is contained in the
num_axes element of the XValuatorInfo structure. The size of the motion buffer for the device
is reported in the motion_buffer field of the XValuatorInfo structure.

The XDeviceInfo structure contains the following information:

typedef struct _XDeviceInfo
{
XID id;
Atom type;
char *name;
int num_classes;
int use;
XAnyClassPtr inputclassinfo;
} XDeviceInfo;

The structures pointed to by the XDeviceInfo structure contain the following information:

37

X Input Extension Library Specification X11, Release 5

typedef struct _XKeyInfo
{
XID class;
int length;
unsigned short min_keycode;
unsigned short max_keycode;
unsigned short num_keys;
} XKeyInfo;

typedef struct _XButtonInfo {
XID class;
int length;
short num_buttons;
} XButtonInfo;

typedef struct _XValuatorInfo
{
XID class;
int length;
unsigned char num_axes;
unsigned char mode;
unsigned long motion_buffer;
XAxisInfoPtr axes;
} XValuatorInfo;

The XAxisInfo structure pointed to by the XValuatorInfo structure contains the following infor-
mation.

typedef struct _XAxisInfo {
int resolution;
int min_value;
int max_value;
} XAxisInfo;

The following atom names are defined in the file XI.h:

38

X Input Extension Library Specification X11, Release 5

MOUSE
TABLET
KEYBOARD
TOUCHSCREEN
TOUCHPAD
BUTTONBOX
BARCODE
KNOB_BOX
TRACKBALL
QUADRATURE
SPACEBALL
DATAGLOVE
EYETRACKER
CURSORKEYS
FOOTMOUSE
ID_MODULE
ONE_KNOB
NINE_KNOB

These names can be used in an XInternAtom request to return an atom that can be used for com-
parison with the type field of the XDeviceInfo structure.

This function returns NULL if there are no input devices to list. You should use XFreeDeviceL-
ist to free the data returned by XListInputDevices.

void
XFreeDeviceList (list)

XDeviceInfo *list;

list Specifies the pointer to the XDeviceInfo array returned by a previous call to
XListInputDevices.

This function frees the list of input device information.

2.2.6. Enabling And Disabling Extension Devices
Each client program that wishes to access an extension device must request that the server open
that device. This is done via the XOpenDevice request. That request is defined as follows:

XDevice
*XOpenDevice(display, device_id)

Display *display;
XID device_id;

display Specifies the connection to the X server.

device_id Specifies the ID that uniquely identifies the device to be opened. This
ID is obtained from the XListInputDevices request.

This function opens the device for the requesting client and returns an XDevice structure on suc-
cess. That structure is defined as follows:

39

X Input Extension Library Specification X11, Release 5

typedef struct {
XID device_id;
int num_classes;
XInputClassInfo *classes;

} XDevice;

The XDevice structure contains a pointer to an array of XInputClassInfo structures. Each ele-
ment in that array contains information about events of a particular input class supported by the
input device.

The XInputClassInfo structure is defined as follows:

typedef struct {
unsigned char input_class;
unsigned char event_type_base;

} XInputClassInfo;

A client program can determine the event type and event class for a given event by using macros
defined by the input extension. The name of the macro corresponds to the desired event, and the
macro is passed the structure that describes the device from which input is desired, i.e.

DeviceKeyPress (XDevice *device, event_type, event_class)

The macro will fill in the values of the event class to be used in an XSelectExtensionEvent
request to select the event, and the event type to be used in comparing with the event types of
events received via XNextEvent.
Errors returned by this function: BadDevice.

Before terminating, the client program should request that the server close the device. This is
done via the XCloseDevice request.

A client may open the same extension device more than once. Requests after the first successful
one return an additional XDevice structure with the same information as the first, but otherwise
have no effect. A single XCloseDevice request will terminate that client’s access to the device.

Closing a device releases any active or passive grabs the requesting client has established. If the
device is frozen only by an active grab of the requesting client, any queued events are released.

If a client program terminates without closing a device, the server will automatically close that
device on behalf of the client. This does not affect any other clients that may be accessing that
device.

int
XCloseDevice(display, device)

Display *display;
XDevice *device;

display Specifies the connection to the X server.

40

X Input Extension Library Specification X11, Release 5

device Specifies the device to be closed.

This function closes the device for the requesting client, and frees the XDevice structure.

Errors returned by this function: BadDevice.

2.2.7. Changing The Mode Of A Device
Some devices are capable of reporting either relative or absolute motion data. To change the
mode of a device from relative to absolute, use the XSetDeviceMode function. The valid values
are Absolute or Relative.

int
XSetDeviceMode (display, device, mode)

Display *display;
XDevice *device;
int mode;

display Specifies the connection to the X server.

device Specifies the device whose mode should be changed.

mode Specifies the mode. You can specify one of these constants: Absolute
or Relative.

This function allows a client to request the server to change the mode of a device that is capable
of reporting either absolute positional data or relative motion data. If the device is invalid, or the
client has not previously requested that the server open the device via an XOpenDevice request,
this request will fail with a BadDevice error. If the device does not support input class Valua-
tors, or if it is not capable of reporting the specified mode, the request will fail with a BadMatch
error.

This request will fail and return DeviceBusy if another client has already opened the device and
requested a different mode.

Errors returned by this function: BadDevice, BadMatch, BadMode, DeviceBusy.

2.2.8. Initializing Valuators on an Input Device
Some devices that report absolute positional data can be initialized to a starting value. Devices
that are capable of reporting relative motion or absolute positional data may require that their
valuators be initialized to a starting value after the mode of the device is changed to Absolute.
To initialize the valuators on such a device, use the XSetDeviceValuators function.

Status
XSetDeviceValuators (display, device, valuators, first_valuator,

num_valuators)
Display *display;
XDevice *device;
int *valuators, first_valuator, num_valuators;

display Specifies the connection to the X server.

device Specifies the device whose valuators should be initialized.

valuators Specifies the values to which each valuator should be set.

first_valuatorSpecifies the first valuator to be set.

num_valuators
Specifies the number of valuators to be set.

41

X Input Extension Library Specification X11, Release 5

This function initializes the specified valuators on the specified extension input device. Valuators
are numbered beginning with zero. Only the valuators in the range specified by first_valuator and
num_valuators are set. If the number of valuators supported by the device is less than the expres-
sion

first_valuator + num_valuators,

a BadValue error will result.

If the request succeeds, Success is returned. If the specifed device is grabbed by some other
client, the request will fail and a status of AlreadyGrabbed will be returned.
This request can fail with BadLength, BadDevice, BadMatch, and BadValue errors.

2.2.9. Getting Input Device Controls
Some input devices support various configuration controls that can be queried or changed by
clients. The set of supported controls will vary from one input device to another. Requests to
manipulate these controls will fail if either the target X server or the target input device does not
support the requested device control.

Each device control has a unique identifier. Information passed with each device control varies in
length and is mapped by data structures unique to that device control.

To query a device control use XGetDeviceControl.

XDeviceControl
*XGetDeviceControl (display, device, control)

Display *display;
XDevice *device;
int control;

display Specifies the connection to the X server.

device Specifies the device whose configuration control status is to be
returned.

control Identifies the specific device control to be queried.

This request returns the current state of the specified device control. If the target X server does
not support that device control, a BadValue error will be returned. If the specified device does
not support that device control, a BadMatch error will be returned.

If the request is successful, a pointer to a generic XDeviceState structure is returned. The infor-
mation returned varies according to the specified control and is mapped by a structure appropriate
for that control. The first two fields are common to all device controls:

typedef struct {
XID control;
int length;

} XDeviceState;

The control may be compared to constants defined in the file XI.h. Currently defined device con-
trols include DEVICE_RESOLUTION.

The information returned for the DEVICE_RESOLUTION control is defined in the following
structure: include:

42

X Input Extension Library Specification X11, Release 5

typedef struct {
XID control;
int length;
int num_valuators;
int *resolutions;
int *min_resolutions;
int *max_resolutions;

} XDeviceResolutionState;

This device control returns a list of valuators and the range of valid resolutions allowed for each.
Valuators are numbered beginning with 0. Resolutions for all valuators on the device are
returned. For each valuator i on the device, resolutions[i] returns the current setting of the resolu-
tion, min_resolutions[i] returns the minimum valid setting, and max_resolutions[i] returns the
maximum valid setting.

When this control is specified, XGetDeviceControl will fail with a BadMatch error if the
specified device has no valuators.

Other errors returned by this request: BadValue.

2.2.10. Changing Input Device Controls
Some input devices support various configuration controls that can be changed by clients. Typi-
cally, this would be done to initialize the device to a known state or configuration. The set of
supported controls will vary from one input device to another. Requests to manipulate these con-
trols will fail if either the target X server or the target input device does not support the requested
device control. Setting the device control will also fail if the target input device is grabbed by
another client, or is open by another client and has been set to a conflicting state.

Each device control has a unique identifier. Information passed with each device control varies in
length and is mapped by data structures unique to that device control.

To change a device control use XChangeDeviceControl.

Status
XChangeDeviceControl (display, device, control, value)

Display *display;
XDevice *device;
int control;
XDeviceControl *value;

display Specifies the connection to the X server.

device Specifies the device whose configuration control status is to be
modified.

control Identifies the specific device control to be changed.

value Specifies a pointer to an XDeviceControl structure that describes
which control is to be changed, and how it is to be changed.

This request changes the current state of the specified device control. If the target X server does
not support that device control, a BadValue error will be returned. If the specified device does
not support that device control, a BadMatch error will be returned. If another client has the target
device grabbed, a status of AlreadyGrabbed will be returned. If another client has the device
open and has set it to a conflicting state, a status of DeviceBusy will be returned.

43

X Input Extension Library Specification X11, Release 5

If the request fails for any reason, the device control will not be changed.

If the request is successful, the device control will be changed and a status of Success will be
returned. The information passed varies according to the specified control and is mapped by a
structure appropriate for that control. The first two fields are common to all device controls:

typedef struct {
XID control;
int length;

} XDeviceControl;

The control may be set using constants defined in the file XI.h. Currently defined device controls
include DEVICE_RESOLUTION.

The information that can be changed by the DEVICE_RESOLUTION control is defined in the
following structure:

typedef struct {
XID control;
int length;
int first_valuator;
int num_valuators;
int *resolutions;

} XDeviceResolutionControl;

This device control changes the resolution of the specified valuators on the specified extension
input device. Valuators are numbered beginning with zero. Only the valuators in the range
specified by first_valuator and num_valuators are set. A value of -1 in the resolutions list indi-
cates that the resolution for this valuator is not to be changed. num_valuators specifies the
number of valuators in the resolutions list.

When this control is specified, XChangeDeviceControl will fail with a BadMatch error if the
specified device has no valuators. If a resolution is specified that is not within the range of valid
values (as returned by XGetDeviceControl) the request will fail with a BadValue error. If the
number of valuators supported by the device is less than the expression

first_valuator + num_valuators,

a BadValue error will result.

2.2.11. Selecting Extension Device Events
Device input events are selected using the XSelectExtensionEvent function. The parameters
passed are a pointer to a list of classes that define the desired event types and devices, a count of
the number of elements in the list, and the id of the window from which events are desired.

44

X Input Extension Library Specification X11, Release 5

int
XSelectExtensionEvent (display, window, event_list, event_count)

Display *display;
Window window;
XEventClass *event_list;
int event_count;

display Specifies the connection to the X server.

window Specifies the ID of the window from which the client wishes to receive
events.

event_list Specifies a pointer to a list of XEventClasses that specify which events
are desired.

event_countSpecifies the number of elements in the event_list.

This function requests the server to send events that match the events and devices described by
the event list and that come from the requested window. The elements of the XEventClass array
are the event_class values returned obtained by invoking a macro with the pointer to a Device
structure returned by the XOpenDevice request. For example, the DeviceKeyPress macro,
invoked in the form:

DeviceKeyPress (XDevice *device, event_type, event_class)

returns the XEventClass for DeviceKeyPress events from the specified device.

Macros are defined for the following event classes: DeviceKeyPress, DeviceKeyRelease, Devi-
ceButtonPress, DeviceButtonRelease, DeviceMotionNotify, DeviceFocusIn, DeviceFocusOut,
ProximityIn, ProximityOut, DeviceStateNotify, DeviceMappingNotify, ChangeDeviceNotify,
DevicePointerMotionHint, DeviceButton1Motion, DeviceButton2Motion,
DeviceButton3Motion, DeviceButton4Motion, DeviceButton5Motion, DeviceButtonMotion,
DeviceOwnerGrabButton, and DeviceButtonPressGrab. To get the next available event from
within a client program, use the core XNextEvent function. This returns the next event whether
it came from a core device or an extension device.

Succeeding XSelectExtensionEvent requests using XEventClasses for the same device as was
specified on a previous request will replace the previous set of selected events from that device
with the new set.

Errors returned by this function: BadWindow, BadAccess, BadClass, BadLength.

2.2.12. Determining Selected Device Events
To determine which extension events are currently selected from a given window, use XGet-
SelectedExtensionEvents.

45

X Input Extension Library Specification X11, Release 5

int
XGetSelectedExtensionEvents (display, window, this_client_count,

this_client, all_clients_count, all_clients)
Display *display;
Window window;
int *this_client_count; /* RETURN */
XEventClass **this_client; /* RETURN */
int *all_clients_count; /* RETURN */
XEventClass **all_clients; /* RETURN */

display Specifies the connection to the X server.

window Specifies the ID of the window from which the client wishes to receive
events.

this_client_count
Specifies the number of elements in the this_client list.

this_client Specifies a pointer to a list of XEventClasses that specify which events
are selected by this client.

all_clients_count
Specifies the number of elements in the all_clients list.

all_clients Specifies a pointer to a list of XEventClasses that specify which events
are selected by all clients.

This function returns pointers to two event class arrays. One lists the extension events selected by
this client from the specified window. The other lists the extension events selected by all clients
from the specified window. This information is analogous to that returned in the fields
your_event_mask and all_event_masks of the XWindowAttributes structure when an
XGetWindowAttributes request is made.

You should use XFree to free the two arrays returned by this function.

Errors returned by this function: BadWindow.

2.2.13. Controlling Event Propagation
Extension events propagate up the window hierarchy in the same manner as core events. If a
window is not interested in an extension event, it usually propagates to the closest ancestor that is
interested, unless the dont_propagate list prohibits it. Grabs of extension devices may alter the
set of windows that receive a particular extension event.

Client programs may control event propagation through the use of the following two functions.

XChangeDeviceDontPropagateList adds an event to or deletes an event from the
do_not_propagate list of extension events for the specified window. There is one list per window,
and the list remains for the life of the window. The list is not altered if a client that changed the
list terminates.

Suppression of event propagation is not allowed for all events. If a specified XEventClass is
invalid because suppression of that event is not allowed, a BadClass error will result.

46

X Input Extension Library Specification X11, Release 5

int
XChangeDeviceDontPropagateList (display, window, event_count,

events, mode)
Display *display;
Window window;
int event_count;
XEventClass *events;
int mode;

display Specifies the connection to the X server.

window Specifies the desired window.

event_countSpecifies the number of elements in the events list.

events Specifies a pointer to the list of XEventClasses.

mode Specifies the mode. You may use the constants AddToList or
DeleteFromList.

This function can return BadWindow, BadClass, and BadMode errors.

XGetDeviceDontPropagateList allows a client to determine the do_not_propagate list of exten-
sion events for the specified window.

XEventClass
*XGetDeviceDontPropagateList (display, window, event_count)

Display *display;
Window window;
int *event_count; /*RETURN */

display Specifies the connection to the X server.

window Specifies the desired window.

event_countSpecifies the number of elements in the array returned by this function.

An array of XEventClasses is returned by this function. Each XEventClass represents a device/
event type pair.

This function can return a BadWindow error.

You should use XFree to free the data returned by this function.

2.2.14. Sending An Event
XSendExtensionEvent allows a client to send an extension event to another client.

47

X Input Extension Library Specification X11, Release 5

int
XSendExtensionEvent (display, device, window, propagate,

event_count, event_list, event)
Display *display;
XDevice *device;
Window window;
Bool propagate;
int event_count;
XEventClass *event_list;
XEvent *event;

display Specifies the connection to the X server.

device Specifies the device whose ID is recorded in the event.

window Specifies the destination window ID. You can pass a window ID, Poin-
terWindow or InputFocus.

propagate Specifies a boolean value that is either True or False.

event_countSpecifies the number of elements in the event_list array.

event_list Specifies a pointer to an array of XEventClasses.

event Specifies a pointer to the event that is to be sent.

The XSendExtensionEvent function identifies the destination window, determines which clients
should receive the specified event, and ignores any active grabs. This function requires a list of
XEventClasses to be specified. These are obtained by opening an input device with the XOpen-
Device request.

This function uses the window argument to identify the destination window as follows:

g If you pass PointerWindow, the destination window is the window that contains the pointer.

g If you pass InputFocus, and if the focus window contains the pointer, the destination window
is the window that contains the pointer. If the focus window does not contain the pointer, the
destination window is the focus window.

To determine which clients should receive the specified events, XSendExtensionEvent uses the
propagate argument as follows:

g If propagate is False, the event is sent to every client selecting from the destination window
any of the events specified in the event_list array.

g If propagate is True, and no clients have selected from the destination window any of the
events specified in the event_list array, the destination is replaced with the closest ancestor of
destination for which some client has selected one of the specified events, and for which no
intervening window has that event in its do_not_propagate mask. If no such window exists,
or if the window is an ancestor of the focus window, and InputFocus was originally specified
as the destination, the event is not sent to any clients. Otherwise, the event is reported to
every client selecting on the final destination any of the events specified in event_list.

The event in the XEvent structure must be one of the events defined by the input extension, so
that the X server can correctly byte swap the contents as necessary. The contents of the event are
otherwise unaltered and unchecked by the X server except to force send_event to True in the for-
warded event and to set the sequence number in the event correctly.

XSendExtensionEvent returns zero if the conversion-to-wire protocol failed, otherwise it returns
nonzero.

This function can generate BadDevice, BadValue, BadWindow, or BadClass errors.

48

X Input Extension Library Specification X11, Release 5

2.2.15. Getting Motion History

XDeviceTimeCoord
*XGetDeviceMotionEvents (display, device, start, stop,

nevents_return, mode_return, axis_count_return);
Display *display;
XDevice *device;
Time start, stop;
int *nevents_return;
int *mode_return;
int *axis_count_return;

display Specifies the connection to the X server.

device Specifies the desired device.

start Specifies the start time.

stop Specifies the stop time.

nevents_return
Specifies the address of a variable into which the server will return the
number of positions in the motion buffer returned for this request.

mode_returnSpecifies the address of a variable into which the server will return the
mode of the nevents information. The mode will be one of the follow-
ing: Absolute or Relative.

axis_count_return
Specifies the address of a variable into which the server will return the
number of axes reported in each of the positions returned.

This function returns all positions in the device’s motion history buffer that fall between the
specified start and stop times inclusive. If the start time is in the future, or is later than the stop
time, no positions are returned.

The return type for this function is a structure defined as follows:

typedef struct {
Time time;
unsigned int *data;

} XDeviceTimeCoord;

The data field of the XDeviceTimeCoord structure is a pointer to an array of data items. Each
item is of type int, and there is one data item per axis of motion reported by the device. The
number of axes reported by the device is returned in the axis_count variable.

The value of the data items depends on the mode of the device. The mode is returned in the mode
variable. If the mode is Absolute, the data items are the raw values generated by the device.
These may be scaled by the client program using the maximum values that the device can gen-
erate for each axis of motion that it reports. The maximum value for each axis is reported in the
max_val field of the XAxisInfo structure. This structure is part of the information returned by
the XListInputDevices request.

If the mode is Relative, the data items are the relative values generated by the device. The client
program must choose an initial position for the device and maintain a current position by accu-
mulating these relative values.

49

X Input Extension Library Specification X11, Release 5

Consecutive calls to this function may return data of different modes, if some client program has
changed the mode of the device via an XSetDeviceMode request.

You should use XFreeDeviceMotionEvents to free the data returned by this function.

Errors returned by this function: BadDevice, BadMatch.

void
XFreeDeviceMotionEvents (events)

XDeviceTimeCoord *events;

eventsSpecifies the pointer to the XDeviceTimeCoord array returned by a previous
call to XGetDeviceMotionEvents.

This function frees the array of motion information.

50

X Input Extension Library Specification X11, Release 5

The following information is contained in the <X11/extensions/XInput.h> and
<X11/extensions/XI.h> header files:

51

X Input Extension Library Specification X11, Release 5

/* Definitions used by the library and client */

#ifndef _XINPUT_H_

#define _XINPUT_H_

#ifndef _XLIB_H_

#include <X11/Xlib.h>

#endif

#ifndef _XI_H_

#include "XI.h"

#endif

#define _deviceKeyPress 0

#define _deviceKeyRelease 1

#define _deviceButtonPress 0

#define _deviceButtonRelease 1

#define _deviceMotionNotify 0

#define _deviceFocusIn 0

#define _deviceFocusOut 1

#define _proximityIn 0

#define _proximityOut 1

#define _deviceStateNotify 0

#define _deviceMappingNotify 1

#define _changeDeviceNotify 2

#define FindTypeAndClass(d, type, class, classid, offset) { int i; XInputClassInfo *ip; type = 0; class =

#define DeviceKeyPress(d, type, class) FindTypeAndClass(d, type, class, KeyClass, _deviceKeyPress)

#define DeviceKeyRelease(d, type, class) FindTypeAndClass(d, type, class, KeyClass, _deviceKeyRelease)

#define DeviceButtonPress(d, type, class) FindTypeAndClass(d, type, class, ButtonClass, _deviceButtonPress)

#define DeviceButtonRelease(d, type, class) FindTypeAndClass(d, type, class, ButtonClass, _deviceButtonRelease)

#define DeviceMotionNotify(d, type, class) FindTypeAndClass(d, type, class, ValuatorClass, _deviceMotionNotify)

#define DeviceFocusIn(d, type, class) FindTypeAndClass(d, type, class, FocusClass, _deviceFocusIn)

#define DeviceFocusOut(d, type, class) FindTypeAndClass(d, type, class, FocusClass, _deviceFocusOut)

#define ProximityIn(d, type, class) FindTypeAndClass(d, type, class, ProximityClass, _proximityIn)

#define ProximityOut(d, type, class) FindTypeAndClass(d, type, class, ProximityClass, _proximityOut)

#define DeviceStateNotify(d, type, class) FindTypeAndClass(d, type, class, OtherClass, _deviceStateNotify)

52

X Input Extension Library Specification X11, Release 5

#define DeviceMappingNotify(d, type, class) FindTypeAndClass(d, type, class, OtherClass, _deviceMappingNotify)

#define ChangeDeviceNotify(d, type, class) FindTypeAndClass(d, type, class, OtherClass, _changeDeviceNotify)

#define DevicePointerMotionHint(d, type, class) { class = ((XDevice *) d)->device_id << 8 | _devicePointerMotionHint;}

#define DeviceButton1Motion(d, type, class) { class = ((XDevice *) d)->device_id << 8 | _deviceButton1Motion;}

#define DeviceButton2Motion(d, type, class) { class = ((XDevice *) d)->device_id << 8 | _deviceButton2Motion;}

#define DeviceButton3Motion(d, type, class) { class = ((XDevice *) d)->device_id << 8 | _deviceButton3Motion;}

#define DeviceButton4Motion(d, type, class) { class = ((XDevice *) d)->device_id << 8 | _deviceButton4Motion;}

#define DeviceButton5Motion(d, type, class) { class = ((XDevice *) d)->device_id << 8 | _deviceButton5Motion;}

#define DeviceButtonMotion(d, type, class) { class = ((XDevice *) d)->device_id << 8 | _deviceButtonMotion;}

#define DeviceOwnerGrabButton(d, type, class) { class = ((XDevice *) d)->device_id << 8 | _deviceOwnerGrabButton;}

#define DeviceButtonPressGrab(d, type, class) { class = ((XDevice *) d)->device_id << 8 | _deviceButtonGrab;}

#define NoExtensionEvent(d, type, class) { class = ((XDevice *) d)->device_id << 8 | _noExtensionEvent;}

#define BadDevice(dpy, error) _xibaddevice(dpy, &error)

#define BadClass(dpy, error) _xibadclass(dpy, &error)

#define BadEvent(dpy, error) _xibadevent(dpy, &error)

#define BadMode(dpy, error) _xibadmode(dpy, &error)

#define DeviceBusy(dpy, error) _xidevicebusy(dpy, &error)

/***

*

* DeviceKey events. These events are sent by input devices that

* support input class Keys.

* The location of the X pointer is reported in the coordinate

* fields of the x,y and x_root,y_root fields.

*

*/

typedef struct

{

int type; /* of event */

unsigned long serial; /* # of last request processed */

Bool send_event; /* true if from SendEvent request */

Display *display; /* Display the event was read from */

Window window; /* "event" window reported relative to */

XID deviceid;

Window root; /* root window event occured on */

Window subwindow; /* child window */

Time time; /* milliseconds */

53

X Input Extension Library Specification X11, Release 5

int x, y; /* x, y coordinates in event window */

int x_root; /* coordinates relative to root */

int y_root; /* coordinates relative to root */

unsigned int state; /* key or button mask */

unsigned int keycode; /* detail */

Bool same_screen; /* same screen flag */

unsigned int device_state; /* device key or button mask */

unsigned char axes_count; unsigned char first_axis;

int axis_data[6]; } XDeviceKeyEvent;

typedef XDeviceKeyEvent XDeviceKeyPressedEvent;

typedef XDeviceKeyEvent XDeviceKeyReleasedEvent;

/*** *

* DeviceButton events. These events are sent by extension devices

* that support input class Buttons. * */

typedef struct { int type; /* of event */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if from a SendEvent request */

Display *display; /* Display the event was read from */

Window window; /* "event" window reported relative to */

XID deviceid;

Window root; /* root window that the event occured on */

Window subwindow; /* child window */

Time time; /* milliseconds */

int x, y; /* x, y coordinates in event window */

int x_root; /* coordinates relative to root */

int y_root; /* coordinates relative to root */

unsigned int state; /* key or button mask */

unsigned int button; /* detail */

Bool same_screen; /* same screen flag */

unsigned int device_state; /* device key or button mask */

unsigned char axes_count; unsigned char first_axis; int axis_data[6];

} XDeviceButtonEvent;

typedef XDeviceButtonEvent XDeviceButtonPressedEvent;

typedef XDeviceButtonEvent XDeviceButtonReleasedEvent;

/*** *

* DeviceMotionNotify event. These events are sent by extension devices

* that support input class Valuators. * */

typedef struct { int type; /* of event */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if from a SendEvent request */

Display *display; /* Display the event was read from */

Window window; /* "event" window reported relative to */

XID deviceid;

Window root; /* root window that the event occured on */

Window subwindow; /* child window */

Time time; /* milliseconds */

int x, y; /* x, y coordinates in event window */

int x_root; /* coordinates relative to root */

54

X Input Extension Library Specification X11, Release 5

int y_root; /* coordinates relative to root */

unsigned int state; /* key or button mask */

char is_hint; /* detail */

Bool same_screen; /* same screen flag */

unsigned int device_state; /* device key or button mask */

unsigned char axes_count; unsigned char first_axis; int axis_data[6];

} XDeviceMotionEvent;

/*** *

* DeviceFocusChange events. These events are sent when the focus

* of an extension device that can be focused is changed. * */

typedef struct { int type; /* of event */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if from a SendEvent request */

Display *display; /* Display the event was read from */

Window window; /* "event" window reported relative to */

XID deviceid;

int mode; /* NotifyNormal, NotifyGrab, NotifyUngrab */

int detail; /* * NotifyAncestor, NotifyVirtual, NotifyInferior,

* NotifyNonLinear,NotifyNonLinearVirtual, NotifyPointer,

* NotifyPointerRoot, NotifyDetailNone */ Time time;

} XDeviceFocusChangeEvent;

typedef XDeviceFocusChangeEvent XDeviceFocusInEvent;

typedef XDeviceFocusChangeEvent XDeviceFocusOutEvent;

/*** *

* ProximityNotify events. These events are sent by those absolute

* positioning devices that are capable of generating proximity information. * */

typedef struct {

int type; /* ProximityIn or ProximityOut */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */

Display *display; /* Display the event was read from */

Window window; XID deviceid;

Window root; Window subwindow;

Time time; int x, y;

int x_root, y_root; unsigned int state;

Bool same_screen;

unsigned int device_state; /* device key or button mask */

unsigned char axes_count; unsigned char first_axis;

int axis_data[6]; } XProximityNotifyEvent;

typedef XProximityNotifyEvent XProximityInEvent;

typedef XProximityNotifyEvent XProximityOutEvent;

/*** *

* DeviceStateNotify events are generated on EnterWindow and FocusIn

* for those clients who have selected DeviceState. * */

typedef struct { unsigned char class; unsigned char length; } XInputClass;

typedef struct { int type;

55

X Input Extension Library Specification X11, Release 5

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */

Display *display; /* Display the event was read from */

Window window; XID deviceid; Time time;

int num_classes; char data[64]; } XDeviceStateNotifyEvent;

typedef struct { unsigned char class; unsigned char length;

unsigned char num_valuators; unsigned char mode; int valuators[6];

} XValuatorStatus;

typedef struct { unsigned char class; unsigned char length;

short num_keys; char keys[32]; } XKeyStatus;

typedef struct { unsigned char class; unsigned char length;

short num_buttons; char buttons[32]; } XButtonStatus;

/*** *

* DeviceMappingNotify event. This event is sent when the key mapping,

* modifier mapping, or button mapping of an extension device is changed. * */

typedef struct { int type;

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */

Display *display; /* Display the event was read from */

Window window; /* unused */ XID deviceid;

Time time;

int request; /* one of MappingModifier, MappingKeyboard,

MappingPointer */

int first_keycode;/* first keycode */

int count; /* defines range of change w. first_keycode*/

} XDeviceMappingEvent;

/*** *

* ChangeDeviceNotify event. This event is sent when an

* XChangeKeyboard or XChangePointer request is made. * */

typedef struct { int type;

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */

Display *display; /* Display the event was read from */

Window window; /* unused */ XID deviceid;

Time time; int request; /* NewPointer or NewKeyboard */

} XChangeDeviceNotifyEvent;

/*** *

* Control structures for input devices that support input class

* Feedback. These are used by the XGetFeedbackControl and

* XChangeFeedbackControl functions. * */

typedef struct { XID class; int length;

XID id; } XFeedbackState;

typedef struct { XID class; int length; XID id; int click;

int percent; int pitch; int duration; int led_mask;

56

X Input Extension Library Specification X11, Release 5

int global_auto_repeat;

char auto_repeats[32]; } XKbdFeedbackState;

typedef struct { XID class; int length; XID id; int accelNum;

int accelDenom; int threshold; } XPtrFeedbackState;

typedef struct { XID class; int length; XID id;

int resolution; int minVal; int maxVal; } XIntegerFeedbackState;

typedef struct { XID class; int length; XID id;

int max_symbols; int num_syms_supported; KeySym *syms_supported;

} XStringFeedbackState;

typedef struct { XID class; int length; XID id; int percent;

int pitch; int duration; } XBellFeedbackState;

typedef struct { XID class; int length; XID id;

int led_values; int led_mask; } XLedFeedbackState;

typedef struct { XID class; int length; XID id;

} XFeedbackControl;

typedef struct { XID class; int length; XID id; int accelNum;

int accelDenom; int threshold; } XPtrFeedbackControl;

typedef struct { XID class; int length; XID id; int click;

int percent; int pitch; int duration; int led_mask;

int led_value; int key; int auto_repeat_mode; } XKbdFeedbackControl;

typedef struct { XID class; int length; XID id;

int num_keysyms; KeySym *syms_to_display; } XStringFeedbackControl;

typedef struct { XID class; int length; XID id;

int int_to_display; } XIntegerFeedbackControl;

typedef struct { XID class; int length; XID id; int percent;

int pitch; int duration; } XBellFeedbackControl;

typedef struct { XID class; int length; XID id; int led_mask;

int led_values; } XLedFeedbackControl;

/*** *

* An array of XDeviceList structures is returned by the

* XListInputDevices function. Each entry contains information

* about one input device. Among that information is an array of

* pointers to structures that describe the characteristics of * the input device. * */

typedef struct _XAnyClassinfo *XAnyClassPtr;

typedef struct _XAnyClassinfo { XID class; int length; } XAnyClassInfo;

typedef struct _XDeviceInfo *XDeviceInfoPtr;

typedef struct _XDeviceInfo { XID id;

57

X Input Extension Library Specification X11, Release 5

Atom type;

char *name; int num_classes;

int use; XAnyClassPtr inputclassinfo; } XDeviceInfo;

typedef struct _XKeyInfo *XKeyInfoPtr;

typedef struct _XKeyInfo { XID class; int length;

unsigned short min_keycode; unsigned short max_keycode;

unsigned short num_keys; } XKeyInfo;

typedef struct _XButtonInfo *XButtonInfoPtr;

typedef struct _XButtonInfo { XID class; int length;

short num_buttons; } XButtonInfo;

typedef struct _XAxisInfo *XAxisInfoPtr;

typedef struct _XAxisInfo { int resolution; int min_value;

int max_value; } XAxisInfo;

typedef struct _XValuatorInfo *XValuatorInfoPtr;

typedef struct _XValuatorInfo { XID class;

int length; unsigned char num_axes;

unsigned char mode; unsigned long motion_buffer;

XAxisInfoPtr axes; } XValuatorInfo;

/*** *

* An XDevice structure is returned by the XOpenDevice function.

* It contains an array of pointers to XInputClassInfo structures.

* Each contains information about a class of input supported by the

* device, including a pointer to an array of data for each type of event

* the device reports. * */

typedef struct { unsigned char input_class;

unsigned char event_type_base; } XInputClassInfo;

typedef struct { XID device_id;

int num_classes; XInputClassInfo *classes;

} XDevice;

/*** *

* The following structure is used to return information for the

* XGetSelectedExtensionEvents function. * */

typedef struct { XEventClass event_type; XID device;

} XEventList;

/*** *

* The following structure is used to return motion history data from

* an input device that supports the input class Valuators.

58

X Input Extension Library Specification X11, Release 5

* This information is returned by the XGetDeviceMotionEvents function.

* */

typedef struct { Time time; int *data; } XDeviceTimeCoord;

/*** *

* Device state structure. * */

typedef struct { XID device_id; int num_classes;

XInputClass *data; } XDeviceState;

typedef struct { unsigned char class; unsigned char length;

unsigned char num_valuators; unsigned char mode; int *valuators;

} XValuatorState;

typedef struct { unsigned char class; unsigned char length;

short num_keys; char keys[32]; } XKeyState;

typedef struct { unsigned char class; unsigned char length;

short num_buttons; char buttons[32]; } XButtonState;

/*** *

* Function definitions. * */

XDevice *XOpenDevice(); XDeviceInfo *XListInputDevices();

XDeviceTimeCoord *XGetDeviceMotionEvents();

KeySym *XGetDeviceKeyMapping();

XModifierKeymap *XGetDeviceModifierMapping();

XFeedbackState *XGetFeedbackControl();

XExtensionVersion *XGetExtensionVersion();

XDeviceState *XQueryDeviceState();

XEventClass *XGetDeviceDontPropagateList(); #endif /* _XINPUT_H_ */

/* Definitions used by the server, library and client */

#ifndef _XI_H_

#define _XI_H_

#define sz_xGetExtensionVersionReq 8 #define sz_xGetExtensionVersionReply 32

#define sz_xListInputDevicesReq 4 #define sz_xListInputDevicesReply 32

#define sz_xOpenDeviceReq 8 #define sz_xOpenDeviceReply 32

#define sz_xCloseDeviceReq 8 #define sz_xSetDeviceModeReq 8

#define sz_xSetDeviceModeReply 32

#define sz_xSelectExtensionEventReq 12

#define sz_xGetSelectedExtensionEventsReq 8

#define sz_xGetSelectedExtensionEventsReply 32

#define sz_xChangeDeviceDontPropagateListReq 12

#define sz_xGetDeviceDontPropagateListReq 8

#define sz_xGetDeviceDontPropagateListReply 32

#define sz_xGetDeviceMotionEventsReq 16

#define sz_xGetDeviceMotionEventsReply 32

#define sz_xChangeKeyboardDeviceReq 8

59

X Input Extension Library Specification X11, Release 5

#define sz_xChangeKeyboardDeviceReply 32

#define sz_xChangePointerDeviceReq 8 #define sz_xChangePointerDeviceReply 32

#define sz_xGrabDeviceReq 20 #define sz_xGrabDeviceReply 32

#define sz_xUngrabDeviceReq 12 #define sz_xGrabDeviceKeyReq 20

#define sz_xGrabDeviceKeyReply 32

#define sz_xUngrabDeviceKeyReq 16

#define sz_xGrabDeviceButtonReq 20

#define sz_xGrabDeviceButtonReply 32 #define sz_xUngrabDeviceButtonReq 16

#define sz_xAllowDeviceEventsReq 12 #define sz_xGetDeviceFocusReq 8

#define sz_xGetDeviceFocusReply 32

#define sz_xSetDeviceFocusReq 16 #define sz_xGetFeedbackControlReq 8

#define sz_xGetFeedbackControlReply 32

#define sz_xChangeFeedbackControlReq 12 #define sz_xGetDeviceKeyMappingReq 8

#define sz_xGetDeviceKeyMappingReply 32

#define sz_xChangeDeviceKeyMappingReq 8

#define sz_xGetDeviceModifierMappingReq 8

#define sz_xSetDeviceModifierMappingReq 8

#define sz_xSetDeviceModifierMappingReply 32

#define sz_xGetDeviceButtonMappingReq 8

#define sz_xGetDeviceButtonMappingReply 32

#define sz_xSetDeviceButtonMappingReq 8

#define sz_xSetDeviceButtonMappingReply 32

#define sz_xQueryDeviceStateReq 8 #define sz_xQueryDeviceStateReply 32

#define sz_xSendExtensionEventReq 16 #define sz_xDeviceBellReq 8

#define sz_xSetDeviceValuatorsReq 8 #define sz_xSetDeviceValuatorsReply 32

#define INAME "XInputExtension"

#define XI_KEYBOARD "KEYBOARD" #define XI_MOUSE "MOUSE" #define XI_TABLET "TABLET"

#define XI_TOUCHSCREEN "TOUCHSCREEN" #define XI_TOUCHPAD "TOUCHPAD"

#define XI_BARCODE "BARCODE" #define XI_BUTTONBOX "BUTTONBOX"

#define XI_KNOB_BOX "KNOB_BOX" #define XI_ONE_KNOB "ONE_KNOB"

#define XI_NINE_KNOB "NINE_KNOB" #define XI_TRACKBALL "TRACKBALL"

#define XI_QUADRATURE "QUADRATURE" #define XI_ID_MODULE "ID_MODULE"

#define XI_SPACEBALL "SPACEBALL" #define XI_DATAGLOVE "DATAGLOVE"

#define XI_EYETRACKER "EYETRACKER" #define XI_CURSORKEYS "CURSORKEYS"

#define XI_FOOTMOUSE "FOOTMOUSE"

#define Dont_Check 0 #define XInput_Initial_Release 1

#define XInput_Add_XDeviceBell 2 #define XInput_Add_XSetDeviceValuators 3

#define XI_Absent 0 #define XI_Present 1

#define XI_Initial_Release_Major 1 #define XI_Initial_Release_Minor 0

#define XI_Add_XDeviceBell_Major 1 #define XI_Add_XDeviceBell_Minor 1

#define XI_Add_XSetDeviceValuators_Major 1 #define XI_Add_XSetDeviceValuators_Minor 2

#define NoSuchExtension 1

#define COUNT 0 #define CREATE 1

#define NewPointer 0 #define NewKeyboard 1

60

X Input Extension Library Specification X11, Release 5

#define XPOINTER 0 #define XKEYBOARD 1

#define UseXKeyboard 0

#define IsXPointer 0 #define IsXKeyboard 1 #define IsXExtensionDevice 2

#define AsyncThisDevice 0 #define SyncThisDevice 1 #define ReplayThisDevice 2

#define AsyncOtherDevices 3 #define AsyncAll 4 #define SyncAll 5

#define FollowKeyboard 3 #define RevertToFollowKeyboard 3

#define DvAccelNum (1L << 0) #define DvAccelDenom (1L << 1)

#define DvThreshold (1L << 2)

#define DvKeyClickPercent (1L<<0) #define DvPercent (1L<<1)

#define DvPitch (1L<<2) #define DvDuration (1L<<3)

#define DvLed (1L<<4) #define DvLedMode (1L<<5)

#define DvKey (1L<<6) #define DvAutoRepeatMode (1L<<7)

#define DvString (1L << 0)

#define DvInteger (1L << 0)

#define Relative 0 #define Absolute 1

#define AddToList 0 #define DeleteFromList 1

#define KeyClass 0 #define ButtonClass 1 #define ValuatorClass 2

#define FeedbackClass 3 #define ProximityClass 4 #define FocusClass 5

#define OtherClass 6

#define KbdFeedbackClass 0 #define PtrFeedbackClass 1

#define StringFeedbackClass 2 #define IntegerFeedbackClass 3

#define LedFeedbackClass 4 #define BellFeedbackClass 5

#define _devicePointerMotionHint 0 #define _deviceButton1Motion 1

#define _deviceButton2Motion 2 #define _deviceButton3Motion 3

#define _deviceButton4Motion 4 #define _deviceButton5Motion 5

#define _deviceButtonMotion 6 #define _deviceButtonGrab 7

#define _deviceOwnerGrabButton 8 #define _noExtensionEvent 9

#define XI_BadDevice 0 #define XI_BadEvent 1 #define XI_BadMode 2

#define XI_DeviceBusy 3 #define XI_BadClass 4

typedef unsigned long XEventClass;

/*** *

* Extension version structure. * */

typedef struct { int present; short major_version;

short minor_version; } XExtensionVersion;

#endif /* _XI_H_ */

61

X Input Extension Library Specification X11, Release 5

Table of Contents

1. Input Extension Overview ... 1

1.1. Design Approach ... 1

1.2. Core Input Devices .. 1

1.3. Extension Input Devices ... 1

1.3.1. Input Device Classes .. 2

1.4. Using Extension Input Devices ... 2

2. Library Extension Requests ... 3

2.1. Window Manager Functions ... 3

2.1.1. Changing The Core Devices .. 3

2.1.2. Event Synchronization And Core Grabs .. 4

2.1.3. Extension Active Grabs ... 5

2.1.4. Passively Grabbing A Key ... 7

2.1.5. Passively Grabbing A Button ... 9

2.1.6. Thawing A Device ... 12

2.1.7. Controlling Device Focus .. 13

2.1.8. Controlling Device Feedback .. 15

2.1.9. Ringing a Bell on an Input Device ... 22

2.1.10. Controlling Device Encoding .. 22

2.1.11. Controlling Button Mapping .. 25

2.1.12. Obtaining The State Of A Device .. 26

2.2. Events and Event-Handling Functions .. 28

2.2.1. Event Types ... 28

2.2.2. Event Classes ... 29

2.2.3. Event Structures ... 29

2.2.3.1. Device Key Events .. 30

2.2.3.2. Device Button Events ... 30

2.2.3.3. Device Motion Events ... 31

2.2.3.4. Device Focus Events ... 32

2.2.3.5. Device StateNotify Event ... 33

2.2.3.6. Device Mapping Event ... 34

2.2.3.7. ChangeDeviceNotify Event .. 35

2.2.3.8. Proximity Events ... 35

2.2.4. Determining The Extension Version ... 36

2.2.5. Listing Available Devices .. 37

2.2.6. Enabling And Disabling Extension Devices .. 39

2.2.7. Changing The Mode Of A Device ... 41

2.2.8. Initializing Valuators on an Input Device .. 41

62

X Input Extension Library Specification X11, Release 5

2.2.9. Getting Input Device Controls ... 42

2.2.10. Changing Input Device Controls ... 43

2.2.11. Selecting Extension Device Events ... 44

2.2.12. Determining Selected Device Events ... 45

2.2.13. Controlling Event Propagation .. 46

2.2.14. Sending An Event .. 47

2.2.15. Getting Motion History .. 49

63

