X11 Input Extension Library Specification

MIT X Consortium Standard
X Version 11, Release 5

Mark Patrick Ardent Computer
Geor ge Sachs Hewlett-Packard

Notice

Copyright [0 1989, 1990, 1991 by Hewlett-Packard Company, Ardent Computer, and the Mas-
sachusetts Institute of Technology.

Permission to use, copy, modify, and distribute this documentation for any purpose and without
fee is hereby granted, provided that the above copyright notice and this permission notice appear
in all copies. MIT, Ardent, and Hewlett-Packard make no representations about the suitability for
any purpose of the information in this document. It is provided ‘‘as is’ without express or
implied warranty.

1. Input Extension Overview

This document describes an extension to the X11 server. The purpose of this extension isto sup-
port the use of additional input devices beyond the pointer and keyboard devices defined by the
core X protocol. This first section gives an overview of the input extension. The following sec-
tions correspond to chapters 7 and 8, "Window Manager functions' and "Events and Event-
Handling Functions' of the "Xlib - C Language Interface” manual and describe how to use the
input extension.

1.1. Design Approach

The design approach of the extension is to define functions and events anal ogous to the core func-
tions and events. This allows extension input devices and events to be individually distinguish-
able from each other and from the core input devices and events . These functions and events
make use of a device identifier and support the reporting of n-dimensional motion data as well as
other data that is not currently reportable viathe core input events.

1.2. Corelnput Devices

The X server core protocol supports two input devices. a pointer and a keyboard. The pointer
device has two major functions. First, it may be used to generate motion information that client
programs can detect. Second, it may also be used to indicate the current location and focus of the
X keyboard. To accomplish this, the server echoes a cursor at the current position of the X
pointer. Unless the X keyboard has been explicitly focused, this cursor also shows the current
location and focus of the X keyboard.

The X keyboard is used to generate input that client programs can detect.

The X keyboard and X pointer are referred to in this document as the core devices, and the input
events they generate (KeyPress, KeyRelease, ButtonPress, ButtonRelease, and M otionNotify)
are known as the core input events. All other input devices are referred to as extension input dev-
ices and the input events they generate are referred to as extension input events. This input exten-
sion does not change the behavior or functionality of the core input devices, core events, or core
protocol requests, with the exception of the core grab requests. These requests may affect the
synchronization of events from extension devices. See the explanation in the section titled
"Event Synchronization and Core Grabs'.

Selection of the physical devices to be initially used by the server as the core devices is left
implementation-dependent. Functions are defined that allow client programs to change which
physical devices are used as the core devices.

1.3. Extension Input Devices

The input extension controls access to input devices other than the X keyboard and X pointer. It
allows client programs to select input from these devices independently from each other and
independently from the core devices. Input events from these devices are of extension types
(DeviceK eyPress, DeviceK eyRelease, DeviceButtonPress, DeviceButtonRelease, DeviceM o-
tionNotify, etc.) and contain a device identifier so that events of the same type coming from dif-
ferent input devices can be distinguished.

Extension input events are not limited in size by the size of the server 32-byte wire events.
Extension input events may be constructed by the server sending as many wire sized events as
necessary to return the information required for that event. The library event reformatting rou-
tines are responsible for combining these into one or more client XEvents.

Any input device that generates key, button or motion data may be used as an extension input
device. Extension input devices may have 0 or more keys, 0 or more buttons, and may report O or
more axes of motion. Motion may be reported as relative movements from a previous position or
as an absolute position. All valuators reporting motion information for a given extension input
device must report the same kind of motion information (absolute or relative).

X Input Extension Library Specification X11, Release 5

This extension is designed to accommodate new types of input devices that may be added in the
future. The protocol requests that refer to specific characteristics of input devices organize that
information by input device classes. Server implementors may add new classes of input devices
without changing the protocol requests.

All extension input devices are treated like the core X keyboard in determining their location and
focus. The server does not track the location of these devices on an individual basis, and there-
fore does not echo a cursor to indicate their current location. Instead, their location is determined
by the location of the core X pointer. Like the core X keyboard, some may be explicitly focused.
If they are not explicitly focused, their focusis determined by the location of the core X pointer.

1.3.1. Input Device Classes

Some of the input extension requests divide input devices into classes based on their functional-
ity. Thisis intended to allow new classes of input devices to be defined at a later time without
changing the semantics of these functions. The following input device classes are currently
defined:

KEY The device reports key events.

BUTTON
The device reports button events.

VALUATOR
The device reports valuator data in motion events.

PROXIMITY
The device reports proximity events.

FOCUS
The device can be focused.

FEEDBACK
The device supports feedbacks.

Additional classes may be added in the future. Functions that support multiple input classes, such
as the XListInputDevices function that lists all available input devices, organize the data they
return by input class. Client programs that use these functions should not access data unless it
matches a class defined at the time those clients were compiled. In this way, new classes can be
added without forcing existing clients that use these functions to be recompiled.

1.4. Using Extension Input Devices

A client that wishes to access an input device does so through the library functions defined in the
following sections. A typical sequence of requests that a client would make is asfollows:

e XListlnputDevices - list al of the available input devices. From the information returned by
this request, determine whether the desired input device is attached to the server. For a
description of the XListlnputDevices request, see the section entitled "Listing Available
Devices".

e XOpenDevice- request that the server open the device for access by this client. This request
returns an XDevice structure that is used by most other input extension requests to identify
the specified device. For a description of the XOpenDevice request, see the section entitled
"Enabling and Disabling Extension Devices".

e Determine the event types and event clases needed to select the desired input extension
events, and identify them when they are received. This is done via macros whose name
correspondsto the desired event, i.e. DeviceK eyPress. For a description of these macros, see
the section entitled " Selecting Extension Device Events'.

o XSelectExtensionEvent - select the desired events from the server. For a description of the
XSelextExtensionEvent request, see the section entitted "Selecting Extension Device
Events'.

X Input Extension Library Specification X11, Release 5

e XNextEvent - receive the next available event. This is the core XNextEvent function pro-
vided by the standard X libarary.

Other requests are defined to grab and focus extension devices, to change their key, button, or
modifier mappings, to control the propagation of input extension events, to get maotion history
from an extension device, and to send input extension events to another client. These functions
are described in the following sections.

2. Library Extension Requests

Extension input devices are accessed by client programs through the use of new protocol
requests. The following regquests are provided as extensions to Xlib. Constants and structures
referenced by these functions may be found in the files XI.h and XInput.h, which are attached to
this document as appendix A.

The library will return NoSuchExtension if an extension request is made to a server that does not
support the input extension.

Input extension requests cannot be used to access the X keyboard and X pointer devices.
2.1. Window Manager Functions

2.1.1. Changing The Core Devices

These functions are provided to change which physical device is used as the X pointer or X key-
board. Using these functions may change the characteristics of the core devices. The new
pointer device may have a different number of buttons than the old one did, or the new keyboard
device may have a different number of keys or report a different range of keycodes. Client pro-
grams may be running that depend on those characteristics. For example, a client program could
alocate an array based on the number of buttons on the pointer device, and then use the button
numbers received in button events as indicies into that array. Changing the core devices could
cause such client programs to behave improperly or abnormally terminate, if they ignore the
ChangeDeviceNatify event generated by these requests.

These functions change the X keyboard or X pointer device and generate an XChangeDeviceNo-
tify event and a MappingNotify event. The specified device becomes the new X keyboard or X
pointer device. The location of the core device does not change as aresult of this request.

These requests fail and return AlreadyGrabbed if either the specified device or the core device it
would replace are grabbed by some other client. They fail and return GrabFrozen if either dev-
iceisfrozen by the active grab of another client.

These requests fail with a BadDevice error if the specified device is invalid, has not previously
been opened via XOpenDevice, or is not supported as a core device by the server implementa
tion.

Once the device has successfully replaced one of the core devices, it is treated as a core device
until it isin turn replaced by another ChangeDevice request, or until the server terminates. The
termination of the client that changed the device will not cause it to change back. Attempts to
use the X CloseDevice reguest to close the new core device will fail with a BadDevice error.

To change which physical device is used as the X keyboard, use the XChangeK eyboar dDevice
function.

The specified device must support input class K eys (as reported in the Listl nputDevices request)
or the request will fail with aBadM atch error.

X Input Extension Library Specification X11, Release 5

i nt

XChangeKeyboar dDevi ce (di spl ay, device)
Di spl ay *di spl ay;
XDevi ce *devi ce;

display Specifies the connection to the X server.
device Specifies the desired device.

If no error occurs, this function returns Success. A ChangeDeviceNatify event with the request
field set to NewK eyboard is sent to all clients selecting that event. A MappingNotify event with
the request field set to MappingK eyboard is sent to al clients. The requested device becomes
the X keyboard, and the old keyboard becomes available as an extension input device. The focus
state of the new keyboard is the same as the focus state of the old X keyboard.

Errorsreturned by this function: BadDevice, BadMatch, AlreadyGrabbed, and GrabFrozen.

To change which physical device is used as the X pointer, use the X ChangePointer Device func-
tion. The specified device must support input class Valuators (as reported in the XListlnput-
Devicesrequest) and report at least two axes of motion, or the request will fail with aBadMatch
error. If the specified device reports more than two axes, the two specified in the xaxis and yaxis
arguments will be used. Data from other valuators on the device will be ignored.

If the specified device reports absolute positional information, and the server implementation
does not alow such a device to be used as the X pointer, the request will fail with a BadDevice
error.

i nt
XChangePoi nt er Devi ce (di spl ay, device, xaxis, yaxis)
Di spl ay *di spl ay;
XDevi ce *devi ce;
i nt xaxi s;
i nt yaxi s;

display Specifies the connection to the X server.

device Specifies the desired device.

xaxis Specifies the zero-based index of the axis to be used as the x-axis of the
pointer device.

yaxis Specifies the zero-based index of the axisto be used as the y-axis of the

pointer device.

If no error occurs, this function returns Success. A ChangeDeviceNotify event with the request
field set to NewPointer is sent to al clients selecting that event. A MappingNotify event with
the request field set to MappingPointer is sent to all clients. The requested device becomes the
X pointer, and the old pointer becomes available as an extension input device.

Errors returned by this function: BadDevice, BadM atch, AlreadyGrabbed, and GrabFrozen.

2.1.2. Event Synchronization And Core Grabs

Implementation of the input extension requires an extension of the meaning of event synchroniza-
tion for the core grab requests. Thisis necessary in order to allow window managers to freeze all
input devices with asingle request.

X Input Extension Library Specification X11, Release 5

The core grab requests require a pointer_maode and keyboard_mode argument. The meaning of
these modes is changed by the input extension. For the XGrabPointer and XGrabButton
reguests, pointer_mode controls synchronization of the pointer device, and keyboard_mode
controls the synchronization of all other input devices. For the XGrabK eyboard and XGrabK ey
reguests, pointer_made controls the synchronization of all input devices except the X keyboard,
while keyboard_mode controls the synchronization of the keyboard. When using one of the core
grab requests, the synchronization of extension devicesis controlled by the mode specified for the
device not being grabbed.

2.1.3. Extension Active Grabs

Active grabs of extension devices are supported via the XGrabDevice function in the same way
that core devices are grabbed using the core XGrabK eyboard function, except that a Device is
passed as a function parameter. The XUngrabDevice function allows a previous active grab for
an extension device to be released.

Passive grabs of buttons and keys on extension devices are supported via the XGrabDeviceBut-
ton and XGrabDeviceK ey functions. These passive grabs are released via the XUngrabDevice-
Key and XUngrabDeviceButton functions.

To grab an extension device, use the XGrabDevice function. The device must have previously
been opened using the XOpenDevice function.

i nt

XG abDevi ce (display, device, grab_wi ndow, owner_events,
event _count, event list, this device node,
ot her _devi ce_node, tine)

Di spl ay *di spl ay;

XDevi ce *devi ce;

W ndow gr ab_wi ndow;,

Bool owner _events;

i nt event _count;
XEvent Cl ass *event |ist;

i nt t hi s_devi ce_node;

i nt ot her _devi ce_node;
Ti me time;

display Specifies the connection to the X server.

device Specifies the desired device.
grab_windowSpecifies the ID of a window associated with the device specified
above.

owner_eventsSpecifies a boolean value of either True or False.
event_count Specifies the number of elementsin the event_list array.

event_list Specifies a pointer to alist of event classes that indicate which events
the client wishes to receive. These event classes must have been
obtained using the device being grabbed.

this_device_mode
Controls further processing of events from this device. You can pass
one of these constants: GrabM odeSync or GrabM odeAsync.

other_device_mode
Controls further processing of events from all other devices. You can
pass one of these constants. GrabM odeSync or GrabM odeAsync.

X Input Extension Library Specification X11, Release 5

time Specifies the time. This may be either a timestamp expressed in mil-
liseconds, or CurrentTime.

The XGrabDevice function actively grabs an extension input device, and generates DeviceFocu-
sln and DeviceFocusOut events. Further input events from this device are reported only to the
grabbing client. This function overrides any previous active grab by this client for this device.

The event-list parameter is a pointer to alist of event classes. Thislist indicates which events the
client wishes to receive while the grab is active. If owner_eventsis False, input events from this
device are reported with respect to grab_window and are only reported if specified in event_list.
If owner_eventsis True, then if a generated event would normally be reported to this client, it is
reported normally. Otherwise the event is reported with respect to the grab_window, and is only
reported if specified in event_list.

The this_device_mode argument controls the further processing of events from this device, and
the other_device_ mode argument controls the further processing of input events from all other
devices.

e |f the this_device_mode argument is GrabM odeAsync, device event processing continues
normally; if the device is currently frozen by this client, then processing of device eventsis
resumed. If the this device_ mode argument is GrabM odeSync, the state of the grabbed
device (as seen by client applications) appearsto freeze, and no further device events are gen-
erated by the server until the grabbing client issues a releasing XAllowDeviceEvents call or
until the device grab is released. Actua device input events are not lost while the device is
frozen; they are simply queued for later processing.

e |If the other_device_mode is GrabM odeAsync, event processing from other input devices is
unaffected by activation of the grab. If other_device mode is GrabM odeSync, the state of all
devices except the grabbed device (as seen by client applications) appears to freeze, and no
further events are generated by the server until the grabbing client issues a releasing XAl-
lowEvents or XAllowDeviceEvents call or until the device grab is released. Actual events
are not lost while the other devices are frozen; they are simply queued for later processing.

XGrabDevicefails and returns:
e AlreadyGrabbed If the deviceis actively grabbed by some other client.
e GrabNotViewable If grab_window is not viewable.

e GrablnvalidTime If the specified time is earlier than the last-grab-time for the specified dev-
ice or later than the current X server time. Otherwise, the last-grab-time for the specified dev-
iceis set to the specified time and CurrentTimeis replaced by the current X server time.

e GrabFrozen If the device is frozen by an active grab of another client.
If agrabbed deviceis closed by a client while an active grab by that client isin effect, that active

grab will be released. Any passive grabs established by that client will be released. If the device
is frozen only by an active grab of the requesting client, it is thawed.

Errors returned by this function: BadDevice, BadWindow, BadValue, BadClass.

To release agrab of an extension device, use XUngrabDevice.

i nt

XUngr abDevi ce (display, device, tine)
Di spl ay *di spl ay;
XDevi ce *devi ce;
Ti me tine;

X Input Extension Library Specification X11, Release 5

display Specifies the connection to the X server.
device Specifies the desired device.

time Specifies the time. This may be either a timestamp expressed in mil-
liseconds, or CurrentTime.

This function allows a client to release an extension input device and any queued events if this
client has it grabbed from either XGrabDevice or XGrabDeviceKey. If any other devices are
frozen by the grab, XUngrabDevice thaws them. The function does not release the device and
any queued events if the specified time is earlier than the last-device-grab time or is later than the
current X server time. It also generates DeviceFocusln and DeviceFocusOut events. The X
server automatically performs an XUngrabDevice if the event window for an active device grab
becomes not viewable, or if the client terminates without releasing the grab.

Errorsreturned by this function: BadDevice.

2.1.4. Passively Grabbing A Key

To passively grab a single key on an extension device, use XGrabDeviceKey. That device must
have previously been opened using the XOpenDevice function, or the request will fail with a
BadDevice error. If the specified device does not support input class Keys, the request will fail
with aBadMatch error.

i nt

XG abDevi ceKey (display, device, keycode, nodifiers, nodifier_device
grab_wi ndow, owner_ events, event_count, event |ist,
t hi s_devi ce_npde, other_devi ce_node)

Di spl ay *di spl ay;

XDevi ce *devi ce;

i nt keycode;

unsi gned int nodifiers;
XDevi ce *modi fi er _devi ce;
W ndow grab_w ndow,

Bool owner _events;

i nt event count;
XEvent Cl ass *event i st;

i nt t hi s_devi ce_node;
i nt ot her _devi ce_node;

display Specifies the connection to the X server.

device Specifies the desired device.
keycode Specifies the keycode of the key that is to be grabbed. You can pass
either the keycode or AnyKey.

modifiers Specifies the set of keymasks. This mask is the bitwise inclusive OR
of these keymask bhits. ShiftMask, LockMask, ControlMask,
Mod1Mask, Mod2M ask, Mod3M ask, M od4M ask, M od5M ask.

You can aso pass AnyModifier, which is equivalent to issuing the
grab key request for al possible modifier combinations (including the
combination of no modifiers).

modifier_device
Specifies the device whose modifiers are to be used. If NULL is
specified, the core X keyboard is used as the modifier_device.

X Input Extension Library Specification X11, Release 5

grab_windowSpecifies the ID of a window associated with the device specified
above.

owner_eventsSpecifies a boolean value of either True or False.
event_count Specifies the number of elementsin the event_list array.

event_list Specifies a pointer to alist of event classes that indicate which events
the client wishesto receive.

this_device_mode
Controls further processing of events from this device. You can pass
one of these constants: GrabM odeSync or GrabM odeAsync.

other_device_mode
Controls further processing of events from all other devices. You can
pass one of these constants. GrabM odeSync or GrabM odeAsync.

This function is analogous to the core XGrabK ey function. It creates an explicit passive grab for
akey on an extension device.

The XGrabDeviceKey function establishes a passive grab on a device. Consequently, in the
future,

e |F the deviceis not grabbed and the specified key, which itself can be a modifier key, is logi-
cally pressed when the specified modifier keys logicaly are down on the specified modifier
device (and no other keys are down),

e AND no other modifier keyslogically are down,

e AND EITHER the grab window is an ancestor of (or is) the focus window OR the grab win-
dow is a descendent of the focus window and contains the pointer,

e AND apassive grab on the same device and key combination does not exist on any ancestor
of the grab window,

e THEN the deviceis actively grabbed, asfor XGrabDevice, the last-device-grab time is set to
the time at which the key was pressed (as transmitted in the DeviceK eyPress event), and the
DeviceK eyPress event is reported.

The interpretation of the remaining arguments is as for XGrabDevice. The active grab is ter-
minated automatically when the logical state of the device has the specified key released
(independent of the logical state of the modifier keys).

Note that the logical state of a device (as seen by means of the X protocol) may lag the physical
state if device event processing is frozen.

A modifier of AnyM odifier is equivalent to issuing the request for all possible modifier combina-
tions (including the combination of no modifiers). It is not required that all modifiers specified
have currently assigned keycodes. A key of AnyKey is equivalent to issuing the request for all
possible keycodes. Otherwise, the key must be in the range specified by min_keycode and
max_keycode in the information returned by the XListI nputDevices function. If it is not within
that range, XGrabDeviceK ey generates a BadValue error.

A BadAccess error is generated if some other client has issued a XGrabDeviceKey with the
same device and key combination on the same window. When using AnyModifier or AnyKey,
the request fails completely and the X server generates a BadAccess error and no grabs are esta-
blished if there is a conflicting grab for any combination.

XGrabDeviceKey can generate BadDevice, BadAccess, BadMatch, BadWindow, BadClass,
and BadValue errors.

XGrabDeviceK ey returns Success upon successful completion of the request.

To release a passive grab of asingle key on an extension device, use XUngrabDeviceK ey.

X Input Extension Library Specification X11, Release 5

i nt
XUngr abDevi ceKey (display, device, keycode, nodifiers,
nodi fi er _devi ce, ungrab_w ndow)
Di splay *displ ay;
XDevi ce *devi ce;
i nt keycode;
unsigned int nodifiers;
XDevice *nodifier_device;
W ndow ungr ab_wi ndow;

display Specifies the connection to the X server.
device Specifies the desired device.

keycode Specifies the keycode of the key that is to be ungrabbed. Y ou can pass
either the keycode or AnyKey.

modifiers Specifies the set of keymasks. This mask is the bitwise inclusive OR of
these keymask bits: ShiftMask, LockMask, ControlMask,
Mod1Mask, Mod2M ask, M od3Mask, M od4M ask, M od5M ask.

You can aso pass AnyModifier, which is equivalent to issuing the
ungrab key request for all possible modifier combinations (including
the combination of no modifiers).

modifier _device
Specifies the device whose modifiers are to be used. If NULL is
specified, the core X keyboard is used as the modifier_device.

ungrab_window
Specifies the ID of a window associated with the device specified
above.

This function is analogous to the core XUngrabK ey function. It releases an explicit passive grab
for akey on an extension input device.

Errors returned by this function: BadDevice, BadWindow, BadValue, BadAlloc, and Bad-
Match.

2.1.5. Passively Grabbing A Button

To establish a passive grab for a single button on an extension device, use X GrabDeviceButton.
The specified device must have previously been opened using the XOpenDevice function, or the
regquest will fail with aBadDevice error. If the specified device does not support input class But-
tons, the request will fail with aBadMatch error.

X Input Extension Library Specification X11, Release 5

i nt
XG abDevi ceButton (display, device, button, nodifiers,
nodi fi er_device, grab_w ndow, owner_events, event_count,
event _list, this_device_node, other_devi ce_node)
Di spl ay *di spl ay;
XDevi ce *devi ce;
unsi gned int button;
unsigned int nodifiers;

XDevi ce *nodi fi er _devi ce;
W ndow grab_wi ndow,

Bool owner _events;

i nt event count;
XEvent Cl ass *event |ist;

i nt t hi s_devi ce_node;

i nt ot her _devi ce_node;

display Specifies the connection to the X server.
device Specifies the desired device.

button Specifies the code of the button that is to be grabbed. You can pass
either the button or AnyButton.

modifiers Specifies the set of keymasks. This mask is the bitwise inclusive OR
of these keymask hits. ShiftMask, LockMask, ControlMask,
Mod1Mask, Mod2M ask, Mod3M ask, M od4M ask, M od5M ask.

You can aso pass AnyModifier, which is equivalent to issuing the
grab request for all possible modifier combinations (including the
combination of no modifiers).

modifier _device
Specifies the device whose modifiers are to be used. If NULL is
specified, the core X keyboard is used as the modifier_device.

grab_windowSpecifies the ID of a window associated with the device specified
above.

owner_eventsSpecifies a boolean value of either True or False.
event_count Specifies the number of elementsin the event_list array.

event_list Specifies a list of event classes that indicates which device events are
to be reported to the client.

this_device_mode
Controls further processing of events from this device. You can pass
one of these constants: GrabM odeSync or GrabM odeAsync.

other_device_mode
Controls further processing of events from all other devices. You can
pass one of these constants: GrabM odeSync or GrabM odeAsync.

This function is analogous to the core XGrabButton function. It creates an explicit passive grab
for a button on an extension input device. Since the server does not track extension devices, no
cursor is specified with this request. For the same reason, there is no confine_to parameter. The
device must have previously been opened using the XOpenDevice function.

The XGrabDeviceButton function establishes a passive grab on a device. Consequently, in the
future,

10

X Input Extension Library Specification X11, Release 5

e |F the device is not grabbed and the specified button is logically pressed when the specified
modifier keyslogically are down (and no other buttons or modifier keys are down),

e AND EITHER the grab window is an ancestor of (or is) the focus window OR the grab win-
dow is a descendent of the focus window and contains the pointer,

e AND a passive grab on the same device and button/ key combination does not exist on any
ancestor of the grab window,

e THEN the device is actively grabbed, as for XGrabDevice, the last-grab time is set to the
time at which the button was pressed (as transmitted in the DeviceButtonPr ess event), and
the DeviceButtonPress event is reported.

The interpretation of the remaining arguments is as for XGrabDevice. The active grab is ter-
minated automatically when logical state of the device has al buttons released (independent of
the logical state of the modifier keys).

Note that the logical state of a device (as seen by means of the X protocol) may lag the physical
state if device event processing is frozen.

A modifier of AnyM odifier is equivalent to issuing the request for all possible modifier combina
tions (including the combination of no modifiers). It is not required that al modifiers specified
have currently assigned keycodes. A button of AnyButton is equivalent to issuing the request for
all possible buttons. Otherwise, it is hot required that the specified button be assigned to a physi-
cal button.

A BadAccess error is generated if some other client has issued a XGrabDeviceButton with the
same device and button combination on the same window. When using AnyM odifier or AnyBut-
ton, the request fails completely and the X server generates a BadAccess error and no grabs are
established if thereis a conflicting grab for any combination.

XGrabDeviceButton can generate BadDevice, BadMatch, BadAccess, BadWindow, Bad-
Class, and BadValue errors.

To release a passive grab of a button on an extension device, use XUngrabDeviceButton.

i nt
XUngr abDevi ceButton (display, device, button, nodifiers,
nodi fi er _devi ce, ungrab_w ndow)
Di splay *displ ay;
XDevi ce *device;
unsi gned int button;
unsigned int nodifiers;
XDevice *nodifier_device;
W ndow ungrab_wi ndow,

display Specifies the connection to the X server.
device Specifies the desired device.

button Specifies the code of the button that is to be ungrabbed. You can pass
either a button or AnyButton.

modifiers Specifies the set of keymasks. This mask is the bitwise inclusive OR of
these keymask bitss ShiftMask, LockMask, ControlMask,
Mod1Mask, Mod2M ask, M od3M ask, M od4M ask, M od5M ask.

You can aso pass AnyModifier, which is equivalent to issuing the
ungrab key request for all possible modifier combinations (including
the combination of no modifiers).

11

X Input Extension Library Specification X11, Release 5

modifier_device
Specifies the device whose modifiers are to be used. If NULL is
specified, the core X keyboard is used as the modifier_device.

ungrab_window
Specifies the ID of a window associated with the device specified
above.

This function is analogous to the core XUngrabButton function. It releases an explicit passive
grab for a button on an extension device. That device must have previously been opened using
the XOpenDevice function, or a BadDevice error will result.

A modifier of AnyM odifier is equivalent to issuing the request for all possible modifier combina-
tions (including the combination of no modifiers).

XUngrabDeviceButton can generate BadDevice, BadMatch, BadWindow, BadValue, and
BadAlloc errors.

2.1.6. Thawing A Device

To alow further events to be processed when a device has been frozen, use XAllowDevi-
ceEvents.

i nt
XAl | owDevi ceEvents (di splay, device, event node, tinmne)
Di spl ay *di spl ay;
XDevi ce *devi ce;
i nt event _node;
Ti e tinme;

display Specifies the connection to the X server.
device Specifies the desired device.

event_mode Specifies the event mode. You can pass one of these constants.
AsyncThisDevice, SyncThisDevice, AsyncOther Devices, ReplayTh-
isDevice, AsyncAll, or SyncAll.

time Specifies the time. This may be either a timestamp expressed in mil-
liseconds, or CurrentTime.

The XAllowDeviceEvents function releases some queued events if the client has caused a device
to freeze. The function has no effect if the specified time is earlier than the last-grab time of the
most recent active grab for the client and device, or if the specified time is later than the current X
server time. The following describes the processing that occurs depending on what constant you
pass to the event_mode argument:

e |f the specified device is frozen by the client, event processing for that continues as usua. If
the device is frozen multiple times by the client on behalf of multiple separate grabs,
AsyncThisDevice thaws for al. AsyncThisDevice has no effect if the specified device is not
frozen by the client, but the device need not be grabbed by the client.

e If the specified device is frozen and actively grabbed by the client, event processing for that
device continues normally until the next key or button event is reported to the client. At this
time, the specified device again appears to freeze. However, if the reported event causes the
grab to be released, the specified device does not freeze. SyncThisDevice has no effect if the
specified device is not frozen by the client or is not grabbed by the client.

o If the specified device is actively grabbed by the client and is frozen as the result of an event
having been sent to the client (either from the activation of a GrabDeviceButton or from a
previous AllowDeviceEvents with mode SyncThisDevice, but not from a Grab), the grab is
released and that event is completely reprocessed. This time, however, the request ignores

12

X Input Extension Library Specification X11, Release 5

any passive grabs at or above (towards the root) the grab-window of the grab just released.
The request has no effect if the specified device is not grabbed by the client or if it is not
frozen as the result of an event.

e If the remaining devices are frozen by the client, event processing for them continues as
usual. If the other devices are frozen multiple times by the client on behalf of multiple
separate grabs, AsyncOtherDevices ‘‘thaws'’ for all. AsyncOtherDevices has no effect if the
devices are not frozen by the client, but those devices need not be grabbed by the client.

e If al devices are frozen by the client, event processing (for all devices) continues normally
until the next button or key event is reported to the client for a grabbed device at which time
the devices again appear to freeze. However, if the reported event causes the grab to be
released, then the devices do not freeze (but if any device is still grabbed, then a subsequent
event for it will still cause all devices to freeze). SyncAll has no effect unless all devices are
frozen by the client. If any device is frozen twice by the client on behaf of two separate
grabs, SyncAll "thaws" for both (but a subsequent freeze for SyncAll will only freeze each
device once).

e If al devices are frozen by the client, event processing (for all devices) continues normally.
If any deviceis frozen multiple times by the client on behalf of multiple separate grabs, Asyn-
cAll "thaws' for all. If any device is frozen twice by the client on behalf of two separate
grabs, AsyncAll "thaws' for both. AsyncAll has no effect unless all devices are frozen by the
client.

AsyncThisDevice, SyncThisDevice, and ReplayThisDevice have no effect on the processing of
events from the remaining devices. AsyncOtherDevices has no effect on the processing of events
from the specified device. When the event_mode is SyncAll or AsyncAll, the device parameter is
ignored.

It is possible for several grabs of different devices (by the same or different clients) to be active
simultaneously. If adevice is frozen on behalf of any grab, no event processing is performed for
the device. It is possible for a single device to be frozen because of severa grabs. In this case,
the freeze must be released on behalf of each grab before events can again be processed.

Errors returned by this function: BadDevice, BadValue.

2.1.7. Controlling Device Focus

The current focus window for an extension input device can be determined using the XGetDevi-
ceFocus function. Extension devices are focused using the XSetDeviceFocus function in the
same way that the keyboard is focused using the core X SetlnputFocus function, except that a
deviceid is passed as a function parameter. One additional focus state, FollowK eyboard, is pro-
vided for extension devices.

To get the current focus state, revert state, and focus time of an extension device, use XGetDevi-
ceFocus.

i nt
XGet Devi ceFocus (di splay, device, focus return, revert _to return,
focus_time_return)
Di spl ay *di spl ay;
XDevi ce *devi ce;
W ndow *focus_return;
i nt *revert _to_return;
Ti me *focus tinme_return;

display Specifies the connection to the X server.

13

X Input Extension Library Specification X11, Release 5

device

Specifies the desired device.

focus_returnSpecifies the address of a variable into which the server can return the

ID of the window that contains the device focus, or one of the constants
None, Pointer Root, or FollowK eyboard.

revert_to _return

Specifies the address of a variable into which the server can return the
current revert_to status for the device.

focus time return

Specifies the address of a variable into which the server can return the
focustime last set for the device.

This function returns the focus state, the revert-to state, and the last-focus-time for an extension

input device.

Errorsreturned by this function: BadDevice, BadM atch.

To set the focus of an extension device, use X SetDeviceFocus.

i nt

XSet Devi ceFocus (di splay, device, focus, revert to, tinme)
Di spl ay *di spl ay;
XDevi ce *devi ce;
W ndow focus;

i nt
Ti e

display
device
focus

revert_to

time

revert to;
tinme;

Specifies the connection to the X server.
Specifies the desired device.

Specifies the id of the window to which the device's focus should be
set. This may be a window id, or Pointer Root, FollowK eyboard, or
None.

Specifies to which window the focus of the device should revert if the
focus window becomes not viewable. One of the following constants
may be passed: RevertToParent, RevertToPointer Root, RevertTo-
None, or RevertToFollowK eyboard.

Specifies the time. Y ou can pass either a timestamp, expressed in mil-
liseconds, or CurrentTime.

This function changes the focus for an extension input device and the last-focus-change-time.
The function has no effect if the specified time is earlier than the last-focus-change-time or is
later than the current X server time. Otherwise, the last-focus-change-time is set to the specified
time. Thisfunction causesthe X server to generate DeviceFocusl n and DeviceFocusOut events.

The action taken by the server when this function is requested depends on the value of the focus

argument:

e If the focus argument is None, al input events from this device will be discarded until a new
focuswindow is set. Inthiscase, the revert_to argument isignored.

e |f awindow ID is assigned to the focus argument, it becomes the focus window of the device.
If an input event from the device would normally be reported to this window or to one of its
inferiors, the event is reported normally. Otherwise, the event is reported relative to the focus

window.

14

X Input Extension Library Specification X11, Release 5

e If you assign Pointer Root to the focus argument, the focus window is dynamically taken to
be the root window of whatever screen the pointer is on at each input event. In this case, the
revert_to argument isignored.

e If you assign FollowK eyboar d to the focus argument, the focus window is dynamically taken
to be the same as the focus of the X keyboard at each input event.

The specified focus window must be viewable at the time XSetDeviceFocus is called. Other-
wise, it generates a BadMatch error. If the focus window later becomes not viewable, the X
server evaluates the revert_to argument to determine the new focus window.

e If you assign RevertToParent to the revert_to argument, the focus reverts to the parent (or
the closest viewable ancestor), and the new revert_to value is taken to be RevertToNone.

e |f you assign RevertToPointer Root, RevertToFollowKeyboard, or RevertToNone to the
revert_to argument, the focus revertsto that value.

When the focus reverts, the X server generates DeviceFocusl n and DeviceFocusOut events, but
the last-focus-change time is not affected.

Errors returned by this function: BadDevice, BadM atch, BadValue, and BadWindow.

2.1.8. Controlling Device Feedback

To determine the current feedback settings of an extension input device, use XGetFeedback Con-
trol.

XFeedbackSt at e

* XCGet FeedbackControl (display, device, numfeedbacks return)
Di spl ay *di spl ay;
XDevi ce *devi ce;
i nt *num f eedbacks_return;

display Specifies the connection to the X server.
device Specifies the desired device.
num_feedbacks return
Returns the number of feedbacks supported by the device.

e Thisfunction returns alist of Feedback State structures that describe the feedbacks supported
by the specified device. There is an XFeedbackState structure for each clase of feedback.
These are of variable length, but the first three fields are common to all. The common fields
are asfollows:

typedef struct {

Xl D cl ass;
i nt | engt h;
XI D id;

} XFeedbackSt at e;

where class identifies the class of feedback. The class may be compared to constants defined in
the file Xl.h. Currently defined feedback constants include KbdFeedbackClass, PtrFeed-
backClass, StringFeedbackClass, |nteger FeedbackClass, L edFeedbackClass, and BellFeed-
backClass.

The length specifies the length of the Feedback State structure and can be used by clients to
traversethelist.

15

X Input Extension Library Specification X11, Release 5

The id uniquely identifies a feedback for a given device and class. This allows a device to sup-
port more than one feedback of the same class. Other feedbacks of other classes or devices may
have the sameid.

e Those feedbacks equivalent to those supported by the core keyboard are reported in class
KbdFeedback using the XK bdFeedback State structure. The members of that structure are
asfollows:

typedef struct {

Xl D cl ass;

i nt | engt h;

Xl D i d;

i nt click;

i nt percent;

i nt pitch;

i nt durati on;

i nt | ed_mask;

i nt gl obal _auto_repeat;
char aut o_repeat s[32];

} XKbdFeedbackSt at e;

The fields of the XK bdFeedback State structure report the current state of the feedback:

e click specifiesthe key-click volume, and has avalue in the range 0 (off) to 100 (loud).

e percent specifiesthe bell volume, and has a value in the range 0 (off) to 100 (loud).

e pitch specifiesthe bell pitch in Hz. The range of the value is implementation-dependent.
e duration specifies the duration in milliseconds of the bell.

e led mask isabit mask that describes the current state of up to 32 LEDs. A value of 1 in a bit
indicates that the corresponding LED ison.

e (global_auto_repeat has avalue of AutoRepeatM odeOn or AutoRepeatM odeOff.

e The auto_repeats member is a bit vector. Each bit set to 1 indicates that auto-repeat is
enabled for the corresponding key. The vector is represented as 32 bytes. Byte N (from 0)
contains the bits for keys 8N to 8N + 7, with the least significant bit int the byte representing
key 8N. Those feedbacks equivalent to those supported by the core pointer are reported in
class PtrFeedback using he XPtrFeedbackState structure. The members of that structure
areasfollows:

typedef struct {

Xl D cl ass;

i nt | engt h;

XI D id;

i nt accel Num

i nt accel Denom
i nt t hreshol d;

} XPtr FeedbackSt at e;

The fields of the XPtr Feedback State structure report the current state of the feedback:
e accelNum returns the numerator for the acceleration multiplier.
e accelDenom returns the denominator for the acceleration multiplier.

16

X Input Extension Library Specification X11, Release 5

e accelDenom returns the threshold for the accel eration.

Integer feedbacks are those capable of displaying integer numbers. The minimum and maximum
values that they can display are reported.

typedef struct {

Xl D cl ass;

i nt | engt h;
XD id;

i nt resol ution;
i nt m nVal ;

i nt maxVal ;

} Xl nt eger FeedbackSt at e;

The fields of the X| nteger Feedback State structure report the capabilities of the feedback:
e resolution specifies the number of digits that the feedback can display.
e minVal specifies the minimum value that the feedback can display.

e maxVal specifies the maximum value that the feedback can display. String feedbacks are
those that can display character information. Clients set these feedbacks by passing a list of
KeySyms to be displayed. The XGetFeedbackControl function returns the set of key sym-
bols that the feedback can display, as well as the maximum number of symbols that can be

displayed.

typedef struct {

XID cl ass;

i nt | engt h;

XI D id;

i nt max_synbol s;

i nt num_syns_support ed;

KeySym *synms_supported;
} XStringFeedbackSt at e;

The fields of the X StringFeedback State structure report the capabilities of the feedback:

e max_symbols specifies the maximum number of symbols that can be displayed.

e syms supported isapointer to thelist of supported symboals.

e num_syms supported specifies the length of the list of supported symbols. Bell feedbacks
are those that can generate a sound. Some implementations may support a bell as part of a
KbdFeedback feedback. Class BellFeedback is provided for implementations that do not
choose to do so, and for devices that support multiple feedbacks that can produce sound. The
meaning of the fields is the same as that of the corresponding fields in the XK bdFeedback-
State structure.

17

X Input Extension Library Specification X11, Release 5

typedef struct {

Xl D cl ass;

i nt | engt h;
XD id;

i nt per cent;
i nt pitch;

i nt dur ati on;

} XBel | FeedbacksSt at e;

Led feedbacks are those that can generate a light. Up to 32 lights per feedback are supported.
Each bit in led_mask corresponds to one supported light, and the corresponding bit in led_values
indicates whether that light is currently on (1) or off (0). Some implementations may support
leds as part of a KbdFeedback feedback. Class LedFeedback is provided for implementations
that do not choose to do so, and for devices that support multiple led feedbacks.

t ypedef struct {

Xl D cl ass;

i nt | engt h;

X D id;

Mask | ed_val ues;
Mask | ed_nask;

} XLedFeedbackSt at e;

Errorsreturned by this function: BadDevice, BadM atch.

To free the information returned by the XGetFeedback Contral function, use XFreeFeedback-
List.

voi d
XFr eeFeedbackLi st (Ilist)
XFeedbackState *|i st;

list Specifies the pointer to the XFeedback State structure returned by
aprevious call to XGetFeedbackContral.

This function freesthe list of feedback control information.

To change the settings of a feedback on an extension device, use XChangeFeedbackControl.
This function modifies the current control values of the specified feedback using information
passed in the appropriate XFeedbackControl structure for the feedback. Which values are
modified depends on the valuemask passed.

i nt

XChangeFeedbackControl (display, device, val uenask, val ue)
Di spl ay *di spl ay;
XDevi ce *devi ce;
unsi gned | ong val uenask;

XFeedbackControl *val ue;

18

X Input Extension Library Specification X11, Release 5

display Specifies the connection to the X server.
device Specifies the desired device.

valuemask Specifies one value for each bit in the mask (least to most significant
bit). The values are associated with the feedbacks for the specified dev-
ice.
value Specifies a pointer to the X FeedbackControl structure.
This function controls the device characteristics described by the XFeedbackControl structure.

Thereis an XFeedbackControl structure for each clase of feedback. These are of variable length,
but the first two fields are common to all. The common fields are as follows:

t ypedef struct {

Xl D cl ass;
i nt | engt h;
XD i d;

} XFeedbackControl ;

Feedback class KbdFeedback controls feedbacks equivalent to those provided by the core key-
board using the KbdFeedbackControl structure. The members of that structure are:

typedef struct {

Xl D cl ass;

i nt | engt h;
XD id;

i nt click;

i nt percent;

i nt pitch;

i nt duration;
i nt | ed_nask;
i nt | ed_val ue;
i nt key;

i nt aut o_r epeat _node;

} XKbdFeedbackControl ;

This class controls the device characteristics described by the XK bdFeedback Control structure.
These include the key click_percent, global_auto_repeat and individual key auto-repeat. Valid
modes are AutoRepeatM odeOn, AutoRepeatM odeOff, AutoRepeatM odeDefault.

Valid masks are as follows;

#define DvK eyClickPercent (1L << 0)

#define DvPercent (1L <<1)
#define DvPitch (1L << 2)
#define DvDuration (1L << 3)
#define DvLed (1L << 9)
#define DvLedMode (1L <<5)
#define DvK ey (1L << 6)

#define DvAutoRepeatMode (1L << 7)

Errorsreturned by this function: BadDevice, BadM atch, BadValue.

Feedback class Ptr Feedback controls feedbacks equivalent to those provided by the core pointer
using the Ptr Feedback Control structure. The members of that structure are:

19

X Input Extension Library Specification X11, Release 5

typedef struct {

Xl D cl ass;

i nt | engt h;
XD id;

i nt accel Num

i nt accel Denom
i nt t hr eshol d;

} XPtrFeedbackControl;

Which values are modified depends on the valuemask passed.
Valid masks are as follows:

#define DvAccelnum (1L << 0)
#define DvAccelDenom (1L << 1)
#define DvThreshold (1L << 2)

The acceleration, expressed as a fraction, is a multiplier for movement. For example, specifying
3/1 means the device moves three times as fast as normal. The fraction may be rounded arbi-
trarily by the X server. Acceleration only takes effect if the device moves more than threshold
pixels at once and only applies to the amount beyond the value in the threshold argument. Set-
ting avalue to -1 restores the default. The values of the accel Numerator and threshold fields must
be nonzero for the pointer values to be set. Otherwise, the parameters will be unchanged. Nega-
tive values generate a BadValue error, as does a zero value for the accel Denominator field.

This request fails with a BadM atch error if the specified device is not currently reporting relative
motion. If a device that is capable of reporting both relative and absolute motion has its mode
changed from Relative to Absolute by an XSetDeviceM ode request, valuator control values will
be ignored by the server while the device isin that mode.

Feedback class | nteger Feedback controls integer feedbacks displayed on input devices, using
the I nteger Feedback Control structure. The members of that structure are:

typedef struct {

Xl D cl ass;

i nt | engt h;

XD i d;

i nt i nt _to_display;

} Xl nt eger FeedbackControl ;

Valid masks are as follows:
#define DvInteger (1L << 0)

Feedback class StringFeedback controls string feedbacks displayed on input devices, using the
StringFeedback Control structure. The members of that structure are:

20

X Input Extension Library Specification X11, Release 5

typedef struct {

Xl D cl ass;

i nt | engt h;

XD id;

i nt num keysyns;

KeySym *syns_to_di spl ay;
} XStringFeedbackControl;
Valid masks are asfollows:
#define DvString (1L << 0)

Feedback class BellFeedback controls abell on an input device, using the BellFeedback Control
structure. The members of that structure are:

t ypedef struct {

Xl D cl ass;

i nt | engt h;
Xl D id;

i nt percent;
i nt pitch;

i nt durati on;

} XBel | FeedbackControl ;

Valid masks are as follows;

#define DvPercent (1L << 1)
#define DvPitch (1L << 2)
#define DvDuration (1L << 3)

Toring abell on an extension input device, use the XDeviceBell protocol request.

Feedback class L edFeedback controls lights on an input device, using the L edFeedback Contr ol
structure. The members of that structure are:

typedef struct {

Xl D cl ass;

i nt | engt h;
XD i d;

i nt | ed_nask;

i nt | ed_val ues;

} XLedFeedbackControl ;

Valid masks are as follows:

#define DvLed (1L << 4)
#define DvLedMode (1L << 5)

Errorsreturned by this function: BadDevice, BadM atch, BadFeedBack.

21

X Input Extension Library Specification X11, Release 5

2.1.9. Ringing a Bell on an Input Device
Toring abell on a extension input device, use XDeviceBell.

i nt
XDevi ceBel | (display, device, feedbackclass, feedbackid, percent)
Di spl ay *di spl ay;
XDevi ce *devi ce;
Xl D feedbackcl ass, feedbacki d;
i nt percent;

display Specifies the connection to the X server.
device Specifies the desired device.

feedbackclassSpecifies the feedbackclass. Valid vaues are KbdFeedbackClass and
BellFeedbackClass.

feedbackid Specifiestheid of the feedback that has the bell.
percent Specifies the volume in the range -100 (quiet) to 100 percent (loud).

This function is analogous to the core XBell function. It rings the specified bell on the specified
input device feedback, using the specified volume. The specified volume is relative to the base
volume for the feedback. If the value for the percent argument is not in the range -100 to 100
inclusive, a BadValue error results. The volume at which the bell rings when the percent argu-
ment is nonnegativeis:

base - [(base * percent) / 100] + percent
The volume at which the bell rings when the percent argument is negativeis:
base + [(base * percent) / 100]

To change the base volume of the bell, use XChangeFeedback Control.
Errors returned by this function: BadDevice, BadValue.

2.1.10. Controlling Device Encoding

To get the key mapping of an extension device that supports input class Keys, use XGetDevi-
ceK eyM apping.

KeySym
* XCGet Devi ceKeyMappi ng (di spl ay, device, first_keycode wanted,
keycode count, keysyns_per keycode return)
Di spl ay *di spl ay;
XDevi ce *devi ce;
KeyCode first_ keycode want ed;
i nt keycode_count;
i nt *keysyns_per keycode_return;

display Specifies the connection to the X server.
device Specifies the desired device.

first_keycode wanted
Specifies the first keycode that isto be returned.

22

X Input Extension Library Specification X11, Release 5

keycode_count
Specifies the number of keycodes that are to be returned.

keysyms per_keycode return
Returns the number of keysyms per keycode.
This function is analogous to the core XGetK eyboar dM apping function. It returns the symbols
for the specified number of keycodes for the specified extension device.

XGetDeviceKeyM apping returns the symbols for the specified number of keycodes for the
specified extension device, starting with the specified keycode. The first_keycode wanted must
be greater than or equal to min-keycode as returned by the XListlnputDevices request (else a
BadValue error), and

first_keycode wanted + keycode _count — 1

must be less than or equal to max-keycode as returned by the XL istlnputDevices request (else a
BadValue error).

The number of elementsin the keysymslistis

keycode_count * keysyms_per_keycode_return

and KEY SYM number N (counting from zero) for keycode K has an index (counting from zero)
of

(K —first_keycode wanted) * keysyms per_keycode return+ N

in keysyms. The keysyms per_keycode return value is chosen arbitrarily by the server to be
large enough to report all requested symbols. A special KEY SYM value of NoSymbol is used to
fill in unused elements for individual keycodes.

Y ou should use XFree to free the data returned by this function.

If the specified device has not first been opened by this client via XOpenDevice, this request will
fail with aBadDevice error. |If that device does not support input class Keys, this request will fail
with aBadMatch error.

Errors returned by this function: BadDevice, BadMatch, BadValue.

To change the keyboard mapping of an extension device that supports input class Keys, use
XChangeDeviceK eyM apping.

i nt
XChangeDevi ceKeyMappi ng (di spl ay, device, first_keycode,
keysyns_per _keycode, keysyns, num codes)
Di spl ay *di spl ay;
XDevi ce *devi ce;

i nt first_keycode;

i nt keysynms_per _keycode;
KeySym *keysyns;

i nt num codes;

display Specifies the connection to the X server.
device Specifies the desired device.
first_keycodeSpecifies the first keycode that isto be changed.

23

X Input Extension Library Specification X11, Release 5

keysyms per_keycode
Specifies the keysyms that are to be used.

keysyms Specifies apointer to an array of keysyms.
num_codes Specifies the number of keycodes that are to be changed.

This function is analogous to the core XChangeK eyboar dM apping function. It defines the sym-
bols for the specified number of keycodes for the specified extension keyboard device.

If the specified device has not first been opened by this client via XOpenDevice, this request will
fail with a BadDevice error. If the specified device does not support input class Keys, this
regquest will fail with aBadMatch error.

The number of elements in the keysyms list must be a multiple of keysyms per keycode. Other-
wise, XChangeDeviceK eyM apping generates a BadL ength error. The specified first_keycode
must be greater than or equal to the min_keycode value returned by the ListlnputDevices
request, or this request will fail with aBadValue error. In addition, if the following expressionis
not less than the max_keycode value returned by the ListinputDevices request, the request will
fail with aBadValue error:

first_keycode + (num_codes/ keysyms per_keycode) - 1
Errorsreturned by this function: BadDevice, BadM atch, BadValue, BadAlloc.

To obtain the keycodes that are used as modifiers on an extension device that supports input class
Keys, use XGetDeviceM odifier M apping.

XModi fi er Keynap

* XCGet Devi ceMbdi fi er Mappi ng (di spl ay, device)
Di spl ay *di spl ay;
XDevi ce *devi ce;

display Specifies the connection to the X server.

device Specifies the desired device.
This function is analogous to the core XGetModifierMapping function. The
XGetDeviceM odifier M apping function returns a newly created XModifierKeymap structure
that contains the keys being used as modifiers for the specified device. The structure should be

freed after use with XFreeModifierMapping. If only zero values appear in the set for any
modifier, that modifier is disabled.

Errors returned by this function: BadDevice, BadM atch.

To set which keycodes that are to be used as modifiers for an extension device, use
X SetDeviceM odifier M apping.

i nt

XSet Devi ceModi fi er Mappi ng (di spl ay, device, nodnap)
Di spl ay *di spl ay;
XDevi ce *devi ce;

XMbodi fi er Keymap *nodnmap;

24

X Input Extension Library Specification X11, Release 5

display Specifies the connection to the X server.
device Specifies the desired device.
modmap Specifies a pointer to the XM odifier Keymap structure.

This function is analogous to the core XSetModifierMapping function. The
XSetDeviceM odifier M apping function specifies the keycodes of the keys, if any, that are to be
used as modifiers. A zero value means that no key should be used. No two arguments can have
the same nonzero keycode value. Otherwise, XSetDeviceM odifier M apping generates a Bad-
Value error. There are eight modifiers, and the modifiermap member of the XM odifier Keymap
structure contains eight sets of max_keypermod keycodes, one for each modifier in the order
Shift, Lock, Control, Mod1, Mod2, Mod3, Mod4, and Mod5. Only nonzero keycodes have mean-
ing in each set, and zero keycodes are ignored. In addition, all of the nonzero keycodes must be
in the range specified by min_keycode and max_keycode reported by the XListlnputDevices
function. Otherwise, XSetM odifierMapping generates a BadValue error. No keycode may
appear twice in the entire map. Otherwise, it generates aBadValue error.

A X server can impose restrictions on how modifiers can be changed, for example, if certain keys
do not generate up transitions in hardware or if multiple modifier keys are not supported. If some
such restriction is violated, the status reply is MappingFailed, and none of the modifiers are
changed. If the new keycodes specified for amodifier differ from those currently defined and any
(current or new) keys for that modifier are in the logically down state, the status reply is Map-
pingBusy, and none of the modifiers are changed. XSetM odifierMapping generates a Devi-
ceM appingNotify event on a M appingSuccess status.

XSetDeviceM odifier M apping can generate BadDevice, BadMatch, BadAlloc, and BadValue
errors.

2.1.11. Controlling Button Mapping
To set the mapping of the buttons on an extension device, use X SetDeviceButtonM apping.

i nt
XSet Devi ceBut t onMappi ng (di splay, device, map, nmap)
Di spl ay *di spl ay;
XDevi ce *devi ce;
unsi gned char map[];
i nt nmap;

display Specifies the connection to the X server.

device Specifies the desired device.
map Specifies the mapping list.
nmap Specifies the number of items in the mapping list.

The XSetDeviceButtonM apping function sets the mapping of the buttons on an extension dev-
ice. If it succeeds, the X server generates a DeviceM appingNotify event, and X SetDeviceBut-
tonM apping returns MappingSuccess. Elements of the list are indexed starting from one. The
length of the list must be the same as XGetDeviceButtonM apping would return, or a BadValue
error results. The index is a button number, and the element of the list defines the effective
number. A zero element disables a button, and elements are not restricted in value by the number
of physical buttons. However, no two elements can have the same nonzero value, or a BadValue
error results. If any of the buttons to be atered are logically in the down state, X SetDeviceBut-
tonM apping returns M appingBusy, and the mapping is not changed.

25

X Input Extension Library Specification X11, Release 5

XSetDeviceButtonM apping can generate BadDevice, BadM atch, and BadValue errors.

To get the button mapping, use X GetDeviceButtonM apping.

i nt
XGet Devi ceBut t onMappi ng (di spl ay, device, map_return, nnap)
Di spl ay *di spl ay;
XDevi ce *devi ce;
unsi gned char map_return[];
i nt nmap;

display Specifies the connection to the X server.

device Specifies the desired device.
map_return Specifies the mapping list.
nmap Specifies the number of items in the mapping list.

The XGetDeviceButtonM apping function returns the current mapping of the specified extension
device. Elements of the list are indexed starting from one. XGetDeviceButtonM apping returns
the number of physical buttons actually on the pointer. The nominal mapping for the buttons is
the identity mapping: map[i]=i. The nmap argument specifies the length of the array where the
button mapping is returned, and only the first nmap elements are returned in map_return.

Errorsreturned by this function: BadDevice, BadM atch.

2.1.12. Obtaining The State Of A Device

To obtain information that describes the state of the keys, buttons and valuators of an extension
device, use XQueryDeviceState.

XDevi ceSt at e

*XQueryDevi ceState (display, device)
Di spl ay *di spl ay;
XDevi ce *devi ce;

display Specifies the connection to the X server.
device Specifies the desired device.

The XQueryDeviceState function returns a pointer to an XDeviceState structure. This structure

points to alist of structures that describe the state of the keys, buttons, and valuators on the dev-
ice.

typedef struct {
Xl D devi ce_i d;
i nt num cl asses;
Xl nput d ass *dat a;

} XDevi ceSt at e;

26

X Input Extension Library Specification X11, Release 5

e The structures are of variable length, but the first two fields are common to all. The common
fields are as follows:

typedef struct

unsi gned char cl ass;
unsi gned char | engt h;
} Xl nputd ass;

The class field contains a class identifier. This identifier can be compared with constants defined
in thefile X1.h. Currently defined constants are: KeyClass, ButtonClass, and Valuator Class.

The length field contains the length of the structure and can be used by clients to traverse the list.
e The XValuator State structure describes the current state of the valuators on the device. The
num_valuators field contains the number of valuators on the device. The mode field is a

mask whose bits report the data mode and other state information for the device. The follow-
ing bits are currently defined:

Devi ceMbde 1 << O Rel ative = 0, Absolute =1
ProximtyState 1 << 1 InProximty = 0, QutOFProxinmty =1

The valuator sfield contains a pointer to an array of integers that describe the current value of
the valuators. If the modeis Relative, these values are undefined.

t ypedef struct {

unsi gned char cl ass;

unsi gned char | engt h;

unsi gned char num val uat or s;
unsi gned char node;

i nt *val uat ors;

} XVal uat or St at e;

e The XKeyState structure describes the current state of the keys on the device. Byte N (from
0) contains the bits for key 8N to 8N+7 with the least significant bit in the byte representing
key 8N.

typedef struct {
unsi gned char cl ass;
unsi gned char | engt h;
short num keys;
char keys[32] ;

} XKeySt at e;

e The XButtonState structure describes the current state of the buttons on the device. Byte N
(from Q) contains the hits for button 8N to 8N+7 with the least significant bit in the byte
representing button 8N.

27

X Input Extension Library Specification X11, Release 5

typedef struct ({
unsi gned char cl ass;
unsi gned char | engt h;
short num but t ons;
char but t ons[32];
} XButtonStat e;

Y ou should use XFreeDeviceState to free the data returned by this function.
Errorsreturned by this function: BadDevice.

voi d
XFreeDevi ceState (state)
XDevi ceSt at e *st at e;

state Specifies the pointer to the XDeviceState data returned by a previous
call to XQueryDeviceState.

This function frees the device state data.

2.2. Eventsand Event-Handling Functions

The input extension creates input events analogous to the core input events. These extension
input events are generated by manipulating one of the extension input devices. The following
sections describe these events and explain how a client program can receive them.

2.2.1. Event Types

Event types are integer numbers that a client can use to determine what kind of event it has
received. The client compares the type field of the event structure with known event types to
make this determination.

The core input event types are constants and are defined in the header file <X11/X.h>. Extension
event types are not constants. Instead, they are dynamically allocated by the extension’s request
to the X server when the extension is initialized. Because of this, extension event types must be
obtained by the client from the server.

The client program determines the event type for an extension event by using the information
returned by the XOpenDevice request. This type can then be used for comparison with the type
field of events received by the client.

Extension events propagate up the window hierarchy in the same manner as core events. If a
window is not interested in an extension event, it usually propagates to the closest ancestor that is
interested, unless the dont_propagate list prohibits it. Grabs of extension devices may alter the
set of windows that receive a particular extension event.

The following table lists the event category and its associated event type or types.

28

X Input Extension Library Specification X11, Release 5

Event Category Event Type
Device key events DeviceKeyPress,
DeviceKeyRelease
Device motion events DeviceButtonPress,
DeviceButtonRelease,
DeviceMotionNotify
Device input focus events DeviceFocusln,
DeviceFocusOut
Device state notification events | DeviceStateNotify
Device proximity events Proximityln,
ProximityOut
Device mapping events DeviceMappingNotify
Device change events ChangeDeviceNotify

2.2.2. Event Classes

Event classes are integer numbers that are used in the same way as the core event masks. They
are used by aclient program to indicate to the server which events that client program wishes to
receive.

The core input event masks are constants and are defined in the header file <X11/X.h>. Exten-
sion event classes are not constants. Instead, they are dynamically alocated by the extension’s
reguest to the X server when the extension isinitialized. Because of this, extension event classes
must be obtained by the client from the server.

The event class for an extension event and device is obtained from information returned by the
XOpenDevice function. This class can then be used in an X SelectExtensionEvent request to ask
that events of that type from that device be sent to the client program.

For DeviceButtonPress events, the client may specify whether or not an implicit passive grab
should be done when the button is pressed. If the client wants to guarantee that it will receive a
DeviceButtonRelease event for each DeviceButtonPress event it receives, it should specify the
DeviceButtonPressGrab class in addition to the DeviceButtonPress class. This restricts the
client in that only one client at atime may request DeviceButtonPr ess events from the same dev-
ice and window if any client specifiesthis class.

If any client has specified the DeviceButtonPressGrab class, any requests by any other client
that specify the same device and window and specify either DeviceButtonPress or DeviceBut-
tonPressGrab will cause an Access error to be generated.

If only the DeviceButtonPress class is specified, no implicit passive grab will be done when a
button is pressed on the device. Multiple clients may use this class to specify the same device
and window combination.

The client may also select DeviceMotion events only when a button is down. It does this by
specifying the event classes DeviceButton1lMotion through DeviceButton5SMotion. An input
device will only support as many button motion classes asit has buttons.

2.2.3. Event Structures

Each extenson event type has a corresponding structure declared in
<X1l/extensions/XInput.h>. All event structures have the following members:

type Set to the event type number that uniquely identifies it. For example,
when the X server reports a DeviceK eyPr ess event to a client applica-
tion, it sends an XDeviceK eyPr essEvent structure.

display Set to a pointer to a structure that defines the display the event was
read on.

29

X Input Extension Library Specification X11, Release 5

send_event Set to Trueif the event came from an XSendEvent request.

serial Set from the serial number reported in the protocol but expanded from
the 16-bit least-significant bitsto afull 32-bit value.

Extension event structures report the current position of the X pointer. In addition, if the device
reports motion data and is reporting absolute data, the current value of any valuators the device
containsis aso reported.

2.2.3.1. DeviceKey Events

Key events from extension devices contain all the information that is contained in a key event
from the X keyboard. In addition, they contain a device id and report the current value of any
valuators on the device, if that device is reporting absolute data. If data for more than six valua-
tors is being reported, more than one key event will be sent. The axes _count field contains the
number of axes that are being reported. The server sends as many of these events as are needed
to report the device data. Each event contains the total number of axes reported in the axes_count
field, and the first axis reported in the current event in the first_axis field. If the device supports
input class Valuators, but is not reporting absolute mode data, the axes_count field contains O.

The location reported in the x,y and x_root,y_root fieldsis the location of the core X pointer.
The XDeviceKeyEvent structure is defined as follows:

typedef struct
{

int type; /* of event */

unsi gned long serial; /* # of |ast request processed */

Bool send_event ; /* true if from SendEvent request */
Di spl ay *di spl ay; /* Display the event was read from*/
W ndow wi ndow, /* "event" window reported relative to */
XI D devi cei d,;

W ndow root; /* root wi ndow event occurred on */

W ndow subwi ndow, /* child w ndow */

Ti me time; /* mlliseconds */

int X, Y; /* x, y coordinates in event w ndow */
int X_root; /* coordinates relative to root */

int y_root; /* coordinates relative to root */
unsi gned i nt st at e; /* key or button mask */

unsi gned i nt keycode; /* detail */

Bool sane_screen; /* same screen flag */

unsi gned char axes_count;

unsi gned char first_axis;

unsi gned i nt device_state; /* device key or button mask */
int axi s_data[6] ;

} XDevi ceKeyEvent ;

typedef XDevi ceKeyEvent XDevi ceKeyPressedEvent;
typedef XDevi ceKeyEvent XDevi ceKeyRel easedEvent;

2.2.3.2. Device Button Events

Button events from extension devices contain all the information that is contained in a button
event from the X pointer. In addition, they contain adevice id and report the current value of any
valuators on the device, if that device is reporting absolute data. If data for more than six valua-
torsis being reported, more than one button event may be sent. The axes_count field contains the
number of axes that are being reported. The server sends as many of these events as are needed

30

X Input Extension Library Specification X11, Release 5

to report the device data. Each event contains the total number of axes reported in the axes_count
field, and the first axis reported in the current event in the first_axis field. If the device supports
input class Valuators, but is not reporting absolute mode data, the axes_count field contains O.

The location reported in the x,y and x_root,y_root fieldsis the location of the core X pointer.

typedef struct {

int type; /* of event */

unsi gned | ong serial; /* # of |last request processed by server */
Bool send_event; /* true if froma SendEvent request */

Di spl ay *di spl ay; /* Display the event was read from*/

W ndow wi ndow; /* "event" window reported relative to */
Xl D devi cei d;

W ndow root; /* root wi ndow that the event occurred on */
W ndow subwi ndow, /* child wi ndow */

Ti me tinme,; /* mlliseconds */

int X, Y; /* x, y coordinates in event wi ndow */

int X_root; /* coordinates relative to root */

int y_root; /* coordinates relative to root */

unsigned int state; /* key or button nask */

unsigned int button; /* detail */

Bool same_screen; /* sanme screen flag */

unsi gned char axes_count;

unsi gned char first_axis;

unsigned int device_state; /* device key or button mask */
int axi s_data[6] ;

} XDevi ceBut t onEvent;

typedef XDevi ceButtonEvent XDevi ceButtonPressedEvent;
typedef XDevi ceButtonEvent XDevi ceButtonRel easedEvent;

2.2.3.3. Device Motion Events

Motion events from extension devices contain all the information that is contained in a motion
event from the X pointer. In addition, they contain a device id and report the current value of any
valuators on the device.

The location reported in the x,y and x_root,y_root fields is the location of the core X pointer, and
so is 2-dimensional.

Extension motion devices may report motion data for a variable number of axes. The axes_count
field contains the number of axes that are being reported. The server sends as many of these
events as are needed to report the device data. Each event contains the total number of axes
reported in the axes_count field, and the first axis reported in the current event in the first_axis
field.

31

X Input Extension Library Specification

typedef struct

{

int type; /*
unsi gned | ong serial; /*
Bool send_event; [*
Di spl ay *di spl ay; /*
W ndow wi ndow, /*
XI D devi cei d;

W ndow root; /*
W ndow subwi ndow, /*
Ti me time; /*
int X, VY; /*
int X_root; /*
int y_root; /*
unsigned int state; /*
char is_hint; /*
Bool sane_screen; /*
unsigned int device_state;
unsi gned char axes_count;

unsi gned char first_axis;

int axi s_dat a[6] ;

} XDevi ceMoti onEvent;

2.2.3.4. Device Focus Events

X11, Release 5

of event */

of request processed by server */
true if froma SendEvent request */

Di spl ay the event was read from*/
"event" wi ndow reported relative to */

| ast

root wi ndow that the event occurred on */
child wi ndow */

mlliseconds */

X, y coordinates in event w ndow */
coordinates relative to root */
coordinates relative to root */

key or button mask */

detail */

sane screen flag */

/* device key or button nmask */

These events are equivalent to the core focus events. They contain the same information, with
the addition of adeviceid to identify which device has had afocus change, and a timestamp.

DeviceFocusin and DeviceFocusOut events are generated for focus changes of extension dev-
ices in the same manner as core focus events are generated.

32

X Input Extension Library Specification X11, Release 5

typedef struct

{

int type; /* of event */

unsi gned | ong serial; /* # of |ast request processed by server */

Bool send_event; /* true if this came froma SendEvent request */
Di spl ay *di spl ay; /* Display the event was read from*/

W ndow wi ndow, /* "event" windowit is reported relative to */
XI D devi cei d;

int node; /* NotifyNormal, NotifyGab, NotifyUngrab */

int detail;

/*
* NotifyAncestor, NotifyVirtual, Notifylnferior,
* Noti fyNonLi near, NotifyNonLi nearVirtual, NotifyPointer,
* Noti fyPoi nter Root, NotifyDetail None
*/
Ti me tine;
} XDevi ceFocusChangeEvent ;

t ypedef XDevi ceFocusChangeEvent XDevi ceFocusl nEvent;
typedef XDevi ceFocusChangeEvent XDevi ceFocusQut Event;

2.2.3.5. Device StateNotify Event

This event is analogous to the core keymap event, but reports the current state of the device for
each input class that it supports. It is generated after every DeviceFocusln event and Enter No-
tify event and is delivered to clients who have selected X DeviceStateNotify events.

If the device supports input class Vauators, the mode field in the XValuator Status structure is a
bitmask that reports the device mode, proximity state and other state information. The following
bits are currently defined:

0x01 Relative = 0, Absolute =1
0x02 InProximty = 0, QutOProximty =1

If the device supports more valuators than can be reported in a single XEvent, multiple XDevi-
ceStateNotify events will be generated.

33

X Input Extension Library Specification X11, Release 5

typedef struct
{

unsi gned char cl ass;
unsi gned char | engt h;
} Xl nputd ass;

typedef struct {

int type;

unsi gned | ong serial; /* # of |ast request processed by server */

Bool send_event ; /* true if this came froma SendEvent request */
Di spl ay *di spl ay; /* Display the event was read from?*/

W ndow wi ndow,

XI D devi cei d;

Ti me time;

int num cl asses;

char dat a[64] ;

} XDevi ceStateNotifyEvent;

typedef struct {

unsi gned char cl ass;

unsi gned char | engt h;

unsi gned char num val uat ors;

unsi gned char node;

int val uat ors[6] ;
} Xval uat or St at us;

typedef struct {
unsi gned char cl ass;
unsi gned char | engt h;
short num keys;
char keys[32] ;
} XKeySt at us;

typedef struct {
unsi gned char cl ass;
unsi gned char | engt h;
short num but t ons;
char but t ons[32] ;
} XButtonStatus;

2.2.3.6. Device Mapping Event

This event is equivalent to the core MappingNotify event. It notifies client programs when the
mapping of keys, modifiers, or buttons on an extension device has changed.

X Input Extension Library Specification X11, Release 5

typedef struct {

i nt type;

unsi gned long serial;

Bool send_event;

Di spl ay *di spl ay;

W ndow w ndow,

Xl D devi cei d;

Ti me tine;

i nt request;

i nt first_keycode;
i nt count ;

} XDevi ceMappi ngEvent;

2.2.3.7. ChangeDeviceNotify Event

This event has no equivalent in the core protocol. It notifies client programs when one of the core
devices has been changed.

typedef struct {

i nt type;

unsi gned long serial;

Bool send_event;
Di spl ay *di spl ay;

W ndow Wi ndow;

Xl D devi cei d;
Ti ne tine;

i nt request;

} XChangeDevi ceNoti f yEvent ;

2.2.3.8. Proximity Events

These events have no equivalent in the core protocol. Some input devices such as graphics
tablets or touchscreens may send these events to indicate that a stylus has moved into or out of
contact with a positional sensing surface.

The event contains the current value of any valuators on the device, if that device is reporting
absolute data. If data for more than six valuators is being reported, more than one proximity
event may be sent. The axes_count field contains the number of axes that are being reported.
The server sends as many of these events as are needed to report the device data. Each event con-
tains the total number of axes reported in the axes _count field, and the first axis reported in the
current event in the first_axis field. If the device supports input class Valuators, but is not
reporting absolute mode data, the axes_count field contains 0.

35

X Input Extension Library Specification

typedef struct

X11, Release 5

{

int type; /* Proximtyln or ProximtyQut */

unsi gned | ong serial; /* # of |ast request processed by server */
Bool send_event; /* true if this came froma SendEvent request */
Di spl ay *display; /* Display the event was read from?*/

W ndow wi ndow,

XI D devi cei d;

W ndow root;

W ndow subwi ndow,

Ti me tine;

int X, Y;

int X_root, y_root;

unsi gned i nt state;

Bool same_screen;

unsi gned char
unsi gned char first_axis;
unsi gned i nt devi ce_state;
int axi s_data[6];
} XProximtyNotifyEvent;
typedef XProximtyNotifyEvent XProximtylnEvent;
typedef XProximtyNotifyEvent XProximtyQutEvent;

axes_count;

/* device key or button nmask */

2.2.4. Determining The Extension Version

XExt ensi onVer si on

* XCGet Ext ensi onVer si on (di spl ay,
Di spl ay *di spl ay;
char *name;

nane)

display Specifies the connection to the X server.

name Specifies the name of the desired extension.
This function allows a client to determine if a server supports the desired version of the input
extension.

The XExtensionVersion structure returns information about the version of the extension sup-
ported by the server. The structure is defined as follows:

t ypedef struct
{
Bool present;
short rmaj or _versi on;
short m nor _version;
} XExt ensi onVer si on;

The magjor and minor versions can be compared with constants defined in the header file XI.h.
Each version is a superset of the previous versions.

36

X Input Extension Library Specification X11, Release 5

Y ou should use XFree to free the data returned by this function.

2.25. Listing Available Devices

A client program that wishes to access a specific device must first determine whether that device
is connected to the X server. This is done through the XListlnputDevices function, which will
return alist of all devices that can be opened by the X server. The client program can use one of
the names defined in the X1.h header file in an XInternAtom regquest, to determine the device type
of the desired device. This type can then be compared with the device types returned by the
XListlnputDevices request.

XDevi cel nfo
*XLi st | nput Devi ces (display, ndevices)
Di spl ay *di spl ay;
i nt *ndevi ces; /* RETURN */

display Specifies the connection to the X server.

ndevices Specifies the address of a variable into which the server can return the
number of input devices available to the X server.

This function allows a client to determine which devices are available for X input and informa-
tion about those devices. An array of XDevicel nfo structures is returned, with one element in the
array for each device. The number of devicesis returned in the ndevices argument.

The X pointer device and X keyboard device are reported, as well as all available extension input
devices. The usefield of the XDevicel nfo structure specifies the current use of the device. If the
value of thisfield isIsXPointer, the device isthe X pointer device. If the valueis|sXKeyboard,
the device is the X keyboard device. If the value is |sXExtensionDevice, the device is available
for use as an extension input device.

Each XDevicelnfo entry contains a pointer to a list of structures that describe the characteristics
of each class of input supported by that device. The num_classes field contains the number of
entriesin that list.

If the device supports input class Valuators, one of the structures pointed to by the X Devicel nfo
structure will be an XValuatorinfo structure. The axes field of that structure contains the
address of an array of XAxisInfo structures. There is one element in this array for each axis of
motion reported by the device. The number of elements in this array is contained in the
num_axes element of the XValuatorInfo structure. The size of the motion buffer for the device
is reported in the motion_buffer field of the XValuator I nfo structure.

The XDevicel nfo structure contains the following information:

t ypedef struct _XDevicelnfo

{

Xl D id;

Atom type;

char *nane;

i nt num cl asses;
i nt use;

XAnyCl assPtr i nput cl assi nf o;

} XDevi cel nf o;

The structures pointed to by the XDevicel nfo structure contain the following information:

37

X Input Extension Library Specification X11, Release 5

typedef struct _XKeylnfo

Xl D cl ass;
i nt | engt h;
unsi gned short nm n_keycode;
unsi gned short max_keycode;
unsi gned short num keys;
} XKeyl nf o;
typedef struct _XButtonlnfo {
Xl D cl ass;
i nt | engt h;
short num butt ons;

} XButtonl nfo;

t ypedef struct _XVal uatorinfo
Xl D cl ass;
i nt | engt h;
unsi gned char num axes;
unsi gned char node;
unsi gned | ong not i on_buffer;
XAxi sl nfoPtr axes;

} Xval uat or | nf o;

The XAxisl nfo structure pointed to by the XValuator I nfo structure contains the following infor-
mation.

typedef struct _XAxislnfo {
int resolution;
int mn_val ue;
int max_val ue;
} XAXi sl nfo;

The following atom names are defined in the file X1.h:

38

X Input Extension Library Specification X11, Release 5

MOUSE
TABLET
KEYBOARD
TOUCHSCREEN
TOUCHPAD
BUTTONBOX
BARCODE
KNOB_BOX
TRACKBALL
QUADRATURE
SPACEBALL
DATAGLOVE
EYETRACKER
CURSORKEYS
FOOTMOUSE
ID_MODULE
ONE_KNOB
NINE_KNOB

These names can be used in an XInternAtom request to return an atom that can be used for com-
parison with the type field of the XDevicel nfo structure.

This function returns NULL if there are no input devicesto list. Y ou should use XFreeDevicel -
ist to free the data returned by XL istl nputDevices.

voi d
XFreeDevi ceLi st (list)
XDevi cel nfo *list;

list Specifies the pointer to the XDevicelnfo array returned by a previous call to
XListlnputDevices.

This function freesthe list of input device information.

2.2.6. Enabling And Disabling Extension Devices

Each client program that wishes to access an extension device must request that the server open
that device. Thisisdone viathe XOpenDevice request. That request is defined as follows:

XDevi ce

*XOpenDevi ce(di spl ay, device_id)
Di spl ay *di spl ay;
Xl D devi ce_id;

display Specifies the connection to the X server.

device id Specifies the ID that uniquely identifies the device to be opened. This
ID is obtained from the XListI nputDevices request.

This function opens the device for the requesting client and returns an XDevice structure on suc-
cess. That structure is defined as follows:

39

X Input Extension Library Specification X11, Release 5

typedef struct {

Xl D devi ce_id;
i nt num cl asses;
Xl nput d asslinfo *cl|l asses;

} XDevi ce;

The XDevice structure contains a pointer to an array of XInputClassinfo structures. Each ele-
ment in that array contains information about events of a particular input class supported by the
input device.

The XInputClassinfo structure is defined as follows:

t ypedef struct {
unsi gned char input_cl ass;
unsi gned char event type base;
} Xl nput d assl nf o;

A client program can determine the event type and event class for a given event by using macros
defined by the input extension. The name of the macro corresponds to the desired event, and the
macro is passed the structure that describes the device from which input isdesired, i.e.

Devi ceKeyPress (XDevice *device, event_type, event_cl ass)

The macro will fill in the values of the event class to be used in an XSdectExtensionEvent
request to select the event, and the event type to be used in comparing with the event types of
events received via XNextEvent.

Errors returned by this function: BadDevice.

Before terminating, the client program should request that the server close the device. This is
done via the X CloseDevice request.

A client may open the same extension device more than once. Requests after the first successful
one return an additional XDevice structure with the same information as the first, but otherwise
have no effect. A single XCloseDevice request will terminate that client’ s access to the device.

Closing a device releases any active or passive grabs the requesting client has established. If the
deviceisfrozen only by an active grab of the requesting client, any queued events are rel eased.

If a client program terminates without closing a device, the server will automatically close that
device on behalf of the client. This does not affect any other clients that may be accessing that
device.

i nt
XCl oseDevi ce(di spl ay, device)

Di spl ay *di spl ay;
XDevi ce *devi ce;

display Specifies the connection to the X server.

40

X Input Extension Library Specification X11, Release 5

device Specifies the device to be closed.
This function closes the device for the requesting client, and frees the X Device structure.
Errorsreturned by this function: BadDevice.

2.2.7. Changing The Mode Of A Device

Some devices are capable of reporting either relative or absolute motion data. To change the
mode of a device from relative to absolute, use the X SetDeviceM ode function. The valid values
are Absolute or Relative.

i nt

XSet Devi ceMode (di splay, device, nopde)
Di spl ay *di spl ay;
XDevi ce *devi ce;
i nt node;

display Specifies the connection to the X server.

device Specifies the device whose mode should be changed.
mode Specifies the mode. You can specify one of these constants: Absolute
or Relative.

This function allows a client to request the server to change the mode of a device that is capable
of reporting either absolute positional data or relative motion data. If the deviceisinvalid, or the
client has not previously requested that the server open the device via an XOpenDevice request,
this request will fail with a BadDevice error. If the device does not support input class Valua-
tors, or if it is not capable of reporting the specified mode, the request will fail with a BadM atch
error.

This request will fail and return DeviceBusy if another client has aready opened the device and
requested a different mode.

Errorsreturned by this function: BadDevice, BadM atch, BadM ode, DeviceBusy.

2.2.8. Initializing Valuatorson an Input Device

Some devices that report absolute positional data can be initialized to a starting value. Devices
that are capable of reporting relative motion or absolute positional data may require that their
valuators be initialized to a starting value after the mode of the device is changed to Absolute.
Toinitialize the valuators on such a device, use the X SetDeviceValuator s function.

St at us

XSet Devi ceVal uat ors (display, device, valuators, first_val uator,
num val uat or s)
Di spl ay *di spl ay;
XDevi ce *devi ce;

i nt *val uators, first_valuator, numval uators;
display Specifies the connection to the X server.
device Specifies the device whose valuators should be initialized.

valuators Specifies the values to which each valuator should be set.
first_valuator Specifies the first valuator to be set.

num_ valuators
Specifies the number of valuators to be set.

41

X Input Extension Library Specification X11, Release 5

This function initializes the specified valuators on the specified extension input device. Vauators
are numbered beginning with zero. Only the valuatorsin the range specified by first_valuator and
num_valuators are set. If the number of valuators supported by the device is less than the expres-
sion

first _valuator + numval uators,

aBadValue error will result.
If the request succeeds, Success is returned. If the specifed device is grabbed by some other
client, therequest will fail and a status of AlreadyGrabbed will bereturned.

This request can fail with BadL ength, BadDevice, BadM atch, and BadValue errors.

2.2.9. Getting Input Device Controls

Some input devices support various configuration controls that can be queried or changed by
clients. The set of supported controls will vary from one input device to another. Requests to
manipulate these controls will fail if either the target X server or the target input device does not
support the requested device control.

Each device control has aunique identifier. Information passed with each device control variesin
length and is mapped by data structures unique to that device control.
To query adevice control use XGetDeviceControl.

XDevi ceCont r ol

*XCGet Devi ceControl (display, device, control)
Di spl ay *di spl ay;
XDevi ce *devi ce;
int control;

display Specifies the connection to the X server.

device Specifies the device whose configuration control status is to be
returned.
control | dentifies the specific device contral to be queried.

This reguest returns the current state of the specified device control. If the target X server does
not support that device control, a BadValue error will be returned. If the specified device does
not support that device control, a BadMatch error will be returned.

If the request is successful, a pointer to a generic X DeviceState structure is returned. The infor-
mation returned varies according to the specified control and is mapped by a structure appropriate
for that control. Thefirst two fields are common to all device controls:

typedef struct {
Xl D control ;
i nt | engt h;
} XDevi ceSt at e;

The control may be compared to constants defined in the file XI.h. Currently defined device con-
trolsinclude DEVICE _RESOLUTION.

The information returned for the DEVICE_RESOLUTION control is defined in the following
structure: include:

42

X Input Extension Library Specification X11, Release 5

typedef struct {

Xl D control;

i nt | engt h;

i nt num val uat or s;

i nt *resol utions;

i nt *m n_resol utions;
i nt *max_resol utions;

} XDevi ceResol utionSt at e;

This device control returns a list of valuators and the range of valid resolutions allowed for each.
Vauators are numbered beginning with 0. Resolutions for al valuators on the device are
returned. For each valuator i on the device, resolutiong[i] returns the current setting of the resolu-
tion, min_resolutiong[i] returns the minimum valid setting, and max_resolutiong[i] returns the
maximum valid setting.

When this control is specified, XGetDeviceControl will fail with a BadMatch error if the
specified device has no valuators.

Other errorsreturned by thisrequest: BadValue.

2.2.10. Changing Input Device Controls

Some input devices support various configuration controls that can be changed by clients. Typi-
caly, this would be done to initialize the device to a known state or configuration. The set of
supported controls will vary from one input device to another. Requests to manipulate these con-
trols will fail if either the target X server or the target input device does not support the requested
device control. Setting the device control will aso fail if the target input device is grabbed by
another client, or is open by another client and has been set to a conflicting state.

Each device control has aunique identifier. Information passed with each device control variesin
length and is mapped by data structures unigue to that device control.

To change a device control use X ChangeDeviceControl.

St at us
XChangeDevi ceControl (display, device, control, value)
Di spl ay *di spl ay;
XDevi ce *devi ce;
int control;
XDevi ceControl *val ue;

display Specifies the connection to the X server.

device Specifies the device whose configuration control status is to be
modified.

control | dentifies the specific device control to be changed.

value Specifies a pointer to an XDeviceControl structure that describes

which control isto be changed, and how it is to be changed.

This request changes the current state of the specified device control. If the target X server does
not support that device control, a BadValue error will be returned. If the specified device does
not support that device control, a BadMatch error will be returned. If another client has the target
device grabbed, a status of AlreadyGrabbed will be returned. If another client has the device
open and has set it to a conflicting state, a status of DeviceBusy will be returned.

43

X Input Extension Library Specification X11, Release 5

If the request fails for any reason, the device control will not be changed.

If the request is successful, the device control will be changed and a status of Success will be
returned. The information passed varies according to the specified control and is mapped by a
structure appropriate for that control. The first two fields are common to all device controls:

typedef struct {
Xl D control;
i nt | engt h;
} XDevi ceControl;

The control may be set using constants defined in the file X1.h. Currently defined device controls
include DEVICE_RESOLUTION.

The information that can be changed by the DEVICE_RESOLUTION control is defined in the
following structure:

t ypedef struct {

Xl D control;

i nt | engt h;

i nt first_val uator;
i nt num val uat or s;
i nt *resol utions;

} XDevi ceResol utionControl;

This device control changes the resolution of the specified valuators on the specified extension
input device. Vauators are numbered beginning with zero. Only the vauators in the range
specified by first_ valuator and num_valuators are set. A vaue of -1 in the resolutions list indi-
cates that the resolution for this valuator is not to be changed. num valuators specifies the
number of valuatorsin the resolutions list.

When this control is specified, XChangeDeviceControl will fail with a BadMatch error if the
specified device has no valuators. If aresolution is specified that is not within the range of valid
values (as returned by XGetDeviceControl) the request will fail with a BadValue error. If the
number of valuators supported by the device is less than the expression

first _valuator + numyval uators,

aBadVaue error will result.

2.2.11. Selecting Extension Device Events

Device input events are selected using the XSelectExtensionEvent function. The parameters
passed are a pointer to alist of classes that define the desired event types and devices, a count of
the number of elementsin the list, and the id of the window from which events are desired.

X Input Extension Library Specification X11, Release 5

i nt
XSel ect Ext ensi onEvent (di spl ay, w ndow, event_list, event_count)
Di spl ay *di spl ay;
W ndow wi ndow,
XEvent Cl ass *event |ist;
i nt event count;

display Specifies the connection to the X server.

window Specifies the ID of the window from which the client wishes to receive
events.

event_list Specifies a pointer to a list of XEventClasses that specify which events
are desired.

event_count Specifies the number of elementsin the event_list.

This function requests the server to send events that match the events and devices described by
the event list and that come from the requested window. The elements of the XEventClass array
are the event_class values returned obtained by invoking a macro with the pointer to a Device
structure returned by the XOpenDevice request. For example, the DeviceKeyPress macro,
invoked in the form:

Devi ceKeyPress (XDevice *device, event type, event class)

returns the XEventClass for DeviceK eyPress events from the specified device.

Macros are defined for the following event classes: DeviceK eyPress, DeviceK eyRelease, Devi-
ceButtonPress, DeviceButtonRelease, DeviceM otionNotify, DeviceFocusl n, DeviceFocusOut,
Proximityln, ProximityOut, DeviceStateNotify, DeviceM appingNotify, ChangeDeviceNotify,
DevicePointer MotionHint, DeviceButton1Motion, DeviceButton2M otion,
DeviceButton3M otion, DeviceButton4M otion, DeviceButton5M otion, DeviceButtonM otion,
DeviceOwner GrabButton, and DeviceButtonPressGrab. To get the next available event from
within a client program, use the core XNextEvent function. This returns the next event whether
it came from a core device or an extension device.

Succeeding X SelectExtensionEvent requests using XEventClasses for the same device as was
specified on a previous request will replace the previous set of selected events from that device
with the new set.

Errorsreturned by this function: BadWindow, BadAccess, BadClass, BadL ength.

2.2.12. Determining Selected Device Events

To determine which extension events are currently selected from a given window, use XGet-
SelectedExtensionEvents.

45

X Input Extension Library Specification X11, Release 5

i nt
XGet Sel ect edExt ensi onEvents (di splay, w ndow, this_client_count,
this_client, all_clients_count, all_clients)

Di spl ay *di spl ay;

W ndow wi ndow,

i nt *this_client_count; /* RETURN */
XEvent O ass **this_client; /* RETURN */
i nt *all _clients_count; /* RETURN */
XEvent O ass **all _clients; /* RETURN */

display Specifies the connection to the X server.

window Specifies the ID of the window from which the client wishes to receive
events.

this_client_count
Specifies the number of elementsin the this_client list.

this_client Specifies a pointer to alist of XEventClasses that specify which events
are selected by this client.

all_clients_count
Specifies the number of elementsin theall clientslist.

all_clients Specifies a pointer to alist of XEventClasses that specify which events
are selected by all clients.

This function returns pointers to two event class arrays. One lists the extension events selected by
this client from the specified window. The other lists the extension events selected by all clients
from the specified window. This information is analogous to that returned in the fields
your_event mask and all_event_masks of the XWindowAttributes structure when an
XGetWindowAttributes request is made.

Y ou should use XFree to free the two arrays returned by this function.
Errorsreturned by this function: BadWindow.

2.2.13. Controlling Event Propagation

Extension events propagate up the window hierarchy in the same manner as core events. If a
window is not interested in an extension event, it usually propagates to the closest ancestor that is
interested, unless the dont_propagate list prohibits it. Grabs of extension devices may alter the
set of windows that receive a particular extension event.

Client programs may control event propagation through the use of the following two functions.

XChangeDeviceDontPropagateList adds an event to or deletes an event from the
do_not_propagate list of extension events for the specified window. Thereisonelist per window,
and the list remains for the life of the window. The list is not altered if a client that changed the
list terminates.

Suppression of event propagation is not allowed for all events. If a specified XEventClass is
invalid because suppression of that event is not allowed, a BadClass error will result.

46

X Input Extension Library Specification X11, Release 5

i nt
XChangeDevi ceDont Pr opagat eLi st (di spl ay, wi ndow, event_count,
events, node)

Di spl ay *di spl ay;

W ndow wi ndow,

i nt event count;
XEvent Cl ass *events;

i nt node;

display Specifies the connection to the X server.

window Specifies the desired window.

event_count Specifies the number of elementsin the eventslist.
events Specifies apointer to the list of XEventClasses.

mode Specifies the mode. You may use the constants AddToList or
DeleteFromList.

This function can return BadWindow, BadClass, and BadM ode errors.

XGetDeviceDontPropagatel ist allows a client to determine the do_not_propagate list of exten-
sion events for the specified window.

XEvent Cl ass

* XCet Devi ceDont Pr opagat eLi st (di spl ay, w ndow, event_count)
Di spl ay *di spl ay;
W ndow wi ndow;
i nt *event count; [/ *RETURN */

display Specifies the connection to the X server.
window Specifies the desired window.
event_count Specifies the number of elements in the array returned by this function.

An array of XEventClassesis returned by this function. Each XEventClass represents a device/
event type pair.

This function can return aBadWindow error.
Y ou should use XFreeto free the data returned by this function.

2.2.14. Sending An Event
XSendExtensionEvent alows aclient to send an extension event to another client.

47

X Input Extension Library Specification X11, Release 5

i nt
XSendExt ensi onEvent (di spl ay, device, w ndow, propagate,
event _count, event_list, event)

Di spl ay *di spl ay;
XDevi ce *devi ce;

W ndow wi ndow,

Bool pr opagat e;

i nt event count;
XEvent Cl ass *event |ist;
XEvent *event ;

display Specifies the connection to the X server.
device Specifies the device whose ID isrecorded in the event.

window Specifies the destination window ID. Y ou can pass awindow ID, Poin-
terWindow or | nputFocus.

propagate Specifies aboolean value that is either True or False.
event_count Specifies the number of elementsin the event_list array.
event_list Specifies a pointer to an array of XEventClasses.

event Specifies a pointer to the event that isto be sent.

The X SendExtensionEvent function identifies the destination window, determines which clients
should receive the specified event, and ignores any active grabs. This function requires a list of
XEventClasses to be specified. These are obtained by opening an input device with the XOpen-
Device request.

This function uses the window argument to identify the destination window as follows:
e |f you pass Pointer Window, the destination window is the window that contains the pointer.

e If you passInputFocus, and if the focus window contains the pointer, the destination window
is the window that contains the pointer. If the focus window does not contain the pointer, the
destination window is the focus window.

To determine which clients should receive the specified events, X SendExtensionEvent uses the
propagate argument as follows:

e |f propagate is False, the event is sent to every client selecting from the destination window
any of the events specified in the event_list array.

e |If propagate is True, and no clients have selected from the destination window any of the
events specified in the event_list array, the destination is replaced with the closest ancestor of
destination for which some client has selected one of the specified events, and for which no
intervening window has that event in its do_not_propagate mask. If no such window exists,
or if the window is an ancestor of the focus window, and I nputFocus was originally specified
as the destination, the event is not sent to any clients. Otherwise, the event is reported to
every client selecting on the final destination any of the events specified in event_list.

The event in the XEvent structure must be one of the events defined by the input extension, so
that the X server can correctly byte swap the contents as necessary. The contents of the event are
otherwise unaltered and unchecked by the X server except to force send_event to Truein the for-
warded event and to set the sequence number in the event correctly.

XSendExtensionEvent returns zero if the conversion-to-wire protocol failed, otherwise it returns
nonzero.

This function can generate BadDevice, BadValue, BadWindow, or BadClass errors.

48

X Input Extension Library Specification X11, Release 5

2.2.15. Getting Motion History

XDevi ceTi meCoor d

* XCGet Devi ceMbt i onEvent s (di splay, device, start, stop,
nevents return, node return, axis_count_return);
Di spl ay *di spl ay;
XDevi ce *devi ce;

Ti me start, stop;

i nt *nevents_return;

i nt *node_return;

i nt *axi s_count _return;

display Specifies the connection to the X server.

device Specifies the desired device.
start Specifies the start time.
stop Specifies the stop time.

nevents_return
Specifies the address of a variable into which the server will return the
number of positions in the motion buffer returned for this request.

mode_returnSpecifies the address of a variable into which the server will return the
mode of the nevents information. The mode will be one of the follow-
ing: Absolute or Relative.

axis_count_return
Specifies the address of a variable into which the server will return the
number of axes reported in each of the positions returned.

This function returns all positions in the device's motion history buffer that fall between the
specified start and stop times inclusive. |If the start time is in the future, or is later than the stop
time, no positions are returned.

The return type for this function is a structure defined as follows:

typedef struct {

Time tine;

unsi gned int *data;
} XDevi ceTi meCoor d;

The data field of the XDeviceTimeCoord structure is a pointer to an array of data items. Each
item is of type int, and there is one data item per axis of motion reported by the device. The
number of axes reported by the device is returned in the axis_count variable.

The value of the data items depends on the mode of the device. The mode is returned in the mode
variable. If the mode is Absolute, the data items are the raw values generated by the device.
These may be scaled by the client program using the maximum values that the device can gen-
erate for each axis of motion that it reports. The maximum value for each axis is reported in the
max_val field of the XAxisInfo structure. This structure is part of the information returned by
the XListlnputDevices request.

If the mode is Relative, the dataitems are the relative values generated by the device. The client
program must choose an initial position for the device and maintain a current position by accu-
mulating these relative values.

49

X Input Extension Library Specification X11, Release 5

Consecutive calls to this function may return data of different modes, if some client program has
changed the mode of the device via an X SetDeviceM ode request.

Y ou should use XFreeDeviceM otionEventsto free the data returned by this function.
Errorsreturned by this function: BadDevice, BadMatch.

voi d
XFreeDevi ceMbti onEvents (events)
XDevi ceTi meCoord *events;

eventsSpecifies the pointer to the XDeviceTimeCoord array returned by a previous
call to XGetDeviceM otionEvents.

This function frees the array of motion information.

50

X Input Extension Library Specification X11, Release 5

The following information is contained in the <X1l/extensions/Xlnput.h> and
<X1l/extensions/X|.h> header files:

51

X Input Extension Library Specification X11, Release 5

/* Definitions used by the library and client */

#i f ndef _XI NPUT_H_
#define _XINPUT_H_

#i f ndef _XLIB H_
#i ncl ude <X11/ Xl'i b. h>
#endi f

#i fndef _XI_H_
#i ncl ude "Xl . h"

#endi f
#defi ne _devi ceKeyPress 0
#defi ne _devi ceKeyRel ease 1

#define _devi ceButtonPress 0
#define _devi ceButtonRel ease 1

#define _deviceMdtionNotify O

#defi ne _devi ceFocusln 0
#defi ne _devi ceFocusQut 1
#define _proximtyln 0
#define _proximtyQut 1

#define _deviceStateNotify 0
#define _devi ceMappi ngNotify 1
#defi ne _changeDevi ceNotify 2

#defi ne Fi ndTypeAndd ass(d, type, class, classid, offset) { int i; Xlinputdasslnfo *ip; type = 0; class =
#defi ne Devi ceKeyPress(d, type, class) Fi ndTypeAndd ass(d, type, class, KeyOd ass, _devi ceKeyPress)

#defi ne Devi ceKeyRel ease(d, type, class) Fi ndTypeAndd ass(d, type, class, Keyd ass, _devi ceKeyRel ease)

#defi ne DeviceButtonPress(d, type, class) Fi ndTypeAndd ass(d, type, class, ButtonCd ass, _deviceButtonPress)
#defi ne Devi ceButtonRel ease(d, type, class) Fi ndTypeAndd ass(d, type, class, ButtonC ass, _devi ceButtonRel ease
#defi ne DeviceMdtionNotify(d, type, class) Fi ndTypeAndd ass(d, type, class, Valuatord ass, _deviceMtionNotify
#defi ne Devi ceFocusln(d, type, class) Fi ndTypeAndd ass(d, type, class, FocusC ass, _deviceFocusln)

#defi ne Devi ceFocusQut (d, type, class) Fi ndTypeAndd ass(d, type, class, FocusCd ass, _devi ceFocusQut)

#define Proximtyln(d, type, class) Fi ndTypeAndd ass(d, type, class, Proximtyd ass, _proximtyln)

#define ProximtyQut(d, type, class) Fi ndTypeAndd ass(d, type, class, ProximtyCd ass, _proxinmtyQut)

#define DeviceStateNotify(d, type, class) Fi ndTypeAndd ass(d, type, class, Qtherd ass, _deviceStateNotify)

52

X Input Extension Library Specification X11, Release 5

#defi ne Devi ceMappi ngNotify(d, type, class) Fi ndTypeAndd ass(d, type, class, OQtherd ass, _devi ceMappi ngNotify)
#defi ne ChangeDevi ceNotify(d, type, class) Fi ndTypeAndd ass(d, type, class, Qtherd ass, _changeDeviceNotify)

#defi ne Devi cePoi nterMtionH nt(d, type, class) { class = ((XDevice *) d)->device_id << 8 | _devi cePoi nt er \bt i
#defi ne DeviceButtonlMtion(d, type, class) { class = ((XDevice *) d)->device_id << 8 | _devi ceButtonlibti on;]
#defi ne Devi ceButton2Mtion(d, type, class) { class = ((XDevice *) d)->device_id << 8 | _devi ceButton2Mbti on;]
#defi ne DeviceButton3Mtion(d, type, class) { class = ((XDevice *) d)->device_id << 8 | _devi ceButton3Mbti on;]
#defi ne DeviceButton4Mtion(d, type, class) { class = ((XDevice *) d)->device_id << 8 | _devi ceButton4\bti on;]
#defi ne DeviceButton5Mtion(d, type, class) { class = ((XDevice *) d)->device_id << 8 | _devi ceButton5Wti on;]
#defi ne DeviceButtonMtion(d, type, class) { class = ((XDevice *) d)->device_id << 8 | _devi ceButtonhbtion;}

#defi ne Devi ceOmer G abButton(d, type, class) { class = ((XDevice *) d)->device_id << 8 | _devi ceOnner G abBut t
#defi ne DeviceButtonPressGrab(d, type, class) { class = ((XDevice *) d)->device_id << 8 | _devi ceButtonGab;}

#defi ne NoExt ensi onEvent (d, type, class) { class = ((XDevice *) d)->device_id << 8 | _noExtensi onEvent;}

#defi ne BadDevi ce(dpy, error) _xibaddevi ce(dpy, &error)

#defi ne Badd ass(dpy, error) _xibadcl ass(dpy, &error)

#defi ne BadEvent (dpy, error) _xibadevent (dpy, &error)

#defi ne BadMbde(dpy, error) _xibadnode(dpy, &error)

#defi ne Devi ceBusy(dpy, error) _xidevicebusy(dpy, &error)

/***

*

* DeviceKey events. These events are sent by input devices that
* support input class Keys.

* The location of the X pointer is reported in the coordinate

* fields of the x,y and x_root,y_root fields.

*

*/

typedef struct

{

int type; /* of event */

unsi gned long serial; /* # of |last request processed */

Bool send_event ; /* true if from SendEvent request */

Di spl ay *di spl ay; /* Display the event was read from*/

W ndow wi ndow, /* "event" window reported relative to */
XI D devi cei d;

W ndow root; /* root wi ndow event occured on */

W ndow subwi ndow, /* child w ndow */

Ti me tine; /* mlliseconds */

53

X Input Extension Library Specification X11, Release 5

int X, Y; /* x, y coordinates in event w ndow */

int X_root; /* coordinates relative to root */

int y_root; /* coordinates relative to root */

unsi gned i nt st ate; /* key or button mask */

unsi gned i nt keycode; /* detail */

Bool sane_screen; /* same screen flag */

unsi gned i nt device_state; /* device key or button mask */

unsi gned char axes_count; unsi gned char first_axis;
int axi s_data[6] ; } XDevi ceKeyEvent ;

typedef XDevi ceKeyEvent XDevi ceKeyPressedEvent;
typedef XDevi ceKeyEvent XDevi ceKeyRel easedEvent;

/*** *

* DeviceButton events. These events are sent by extension devices

* that support input class Buttons. * */
typedef struct { int type; /* of event */
unsi gned | ong serial; /* # of |ast request processed by server */

Bool send_event ; /* true if froma SendEvent request */
Di spl ay *di spl ay; /* Display the event was read from?*/
W ndow wi ndow, /* "event" window reported relative to */
XI D devi cei d;
W ndow root; /* root wi ndow that the event occured on */
W ndow subwi ndow, /* child w ndow */
Ti me time; /* mlliseconds */
int X, VY; /* x, y coordinates in event w ndow */
int X_root; /* coordinates relative to root */
int y_root; /* coordinates relative to root */
unsigned int state; /* key or button mask */
unsigned int button; [* detail */
Bool sane_screen; /* same screen flag */
unsigned int device_state; /* device key or button mask */
unsi gned char axes_count; unsi gned char first_axis; int axi s_data[6] ;
} XDevi ceButtonEvent;
typedef XDevi ceButtonEvent XDevi ceButtonPressedEvent;
t ypedef XDevi ceButtonEvent XDevi ceButtonRel easedEvent;
/*** *

* DeviceMdtionNotify event. These events are sent by extension devices

* that support input class Valuators. * */

typedef struct { int type; /* of event */
unsi gned | ong serial; /* # of |ast request processed by server */
Bool send_event; /* true if froma SendEvent request */
Di spl ay *di spl ay; /* Display the event was read from*/
W ndow wi ndow, /* "event" window reported relative to */
XI D devi cei d;
W ndow root; /* root wi ndow that the event occured on */
W ndow subwi ndow, /* child wi ndow */
Ti me time; /* mlliseconds */
int X, VY; /* x, y coordinates in event w ndow */
int X_root; /* coordinates relative to root */

X Input Extension Library Specification X11, Release 5

int y_root; /* coordinates relative to root */

unsigned int state; /* key or button mask */

char is_hint; /* detail */

Bool sane_screen; /* same screen flag */

unsigned int device_state; /* device key or button mask */

unsi gned char axes_count; unsi gned char first_axis; int axi s_data[6] ;

} XDevi ceMoti onEvent;

/*** *

* Devi ceFocusChange events. These events are sent when the focus
* of an extension device that can be focused is changed. * */

typedef struct { i nt type; /* of event */

unsi gned | ong serial; /* # of |ast request processed by server */

Bool send_event; /* true if froma SendEvent request */

Di spl ay *di spl ay; /* Display the event was read from*/

W ndow wi ndow, /* "event" window reported relative to */

XI D devi cei d;

int node; /* NotifyNormal, NotifyGab, NotifyUngrab */

int detail; /* * NotifyAncestor, NotifyVirtual, Notifylnferior,
* Noti fyNonLi near, NotifyNonLi nearVirtual, NotifyPointer,
* Noti fyPoi nterRoot, NotifyDetail None */ Ti me time;

} XDevi ceFocusChangeEvent ;

t ypedef XDevi ceFocusChangeEvent XDevi ceFocusl nEvent;
typedef XDevi ceFocusChangeEvent XDevi ceFocusQut Event;

/*** *

* ProximtyNotify events. These events are sent by those absolute
* positioning devices that are capable of generating proxinity information. * */

typedef struct {
int type; /* Proximtyln or ProximtyQut */
unsi gned | ong serial; /* # of |last request processed by server */
Bool send_event; /* true if this came froma SendEvent request */
Di spl ay *display; /* Display the event was read from?*/
W ndow wi ndow, XI D devi cei d;
W ndow root; W ndow subwi ndow,
Ti me time; int X, V;
int X_root, y_root; unsi gned i nt state;
Bool same_screen;
unsi gned i nt device_state; /* device key or button mask */
unsi gned char axes_count ; unsi gned char first_axis;
int axi s_data[6] ; } XProxi mtyNotifyEvent;

typedef XProximtyNotifyEvent XProximtylnEvent;
typedef XProximtyNotifyEvent XProximtyQutEvent;

/*** *

* DeviceStateNotify events are generated on Enter Wndow and Focusln
* for those clients who have sel ected DeviceState. * */

typedef struct { unsi gned char cl ass; unsi gned char | engt h; } Xl nputd ass;

typedef struct { int type;

55

X Input Extension Library Specification X11, Release 5

unsi gned | ong serial; /* # of |ast request processed by server */
Bool send_event ; /* true if this came froma SendEvent request */
Di spl ay *di spl ay; /* Display the event was read from?*/
W ndow wi ndow, XI D devi cei d; Ti me tine;
int num cl asses; char data[64]; } XDeviceStateNotifyEvent;

typedef struct { unsi gned char cl ass; unsi gned char | engt h;
unsi gned char num val uat ors; unsi gned char node; i nt val uat or s[6] ;

} Xval uat or St at us;

typedef struct { unsi gned char cl ass; unsi gned char | engt h;
short num keys; char keys[32]; } XKeyStat us;

typedef struct { unsi gned char cl ass; unsi gned char | engt h;
short num but t ons; char buttons[32]; } XButtonStat us;

/*** *

* Devi ceMappi ngNotify event. This event is sent when the key mapping,
* nmodi fier mapping, or button mapping of an extension device is changed. * */

typedef struct { int type;
unsi gned | ong serial; /* # of |ast request processed by server */
Bool send_event ; /* true if this came froma SendEvent request */
Di spl ay *di spl ay; /* Display the event was read from?*/
W ndow wi ndow, /* unused */ XI D devi cei d;
Ti me time;
int request; /* one of Mappi nghodi fier, Mappi ngKeyboard,
Mappi ngPoi nter */
int first_keycode;/* first keycode */
int count; /* defines range of change w. first_keycode*/

} XDevi ceMappi ngEvent ;

/*** *

* ChangeDevi ceNotify event. This event is sent when an
* XChangeKeyboard or XChangePoi nter request is nade. * */

typedef struct { int type;
unsi gned | ong serial; /* # of |ast request processed by server */
Bool send_event ; /* true if this came froma SendEvent request */
Di spl ay *di spl ay; /* Display the event was read from?*/
W ndow wi ndow, /* unused */ XI D devi cei d;
Ti me tinme; int request; /* NewPoi nter or NewKeyboard */

} XChangeDevi ceNoti f yEvent ;

/*** *
* Control structures for input devices that support input class

* Feedback. These are used by the XGet FeedbackControl and
* XChangeFeedbackControl functions. * */

typedef struct { XID cl ass; int | engt h;

XI D id; } XrFeedbackState;
typedef struct { Xl D cl ass; int | engt h; XI D id; int click;
int percent; i nt pitch; int dur ati on; i nt | ed_mask;

56

X Input Extension Library Specification X11, Release 5

int gl obal _aut o_r epeat ;
char aut o_repeat s[32]; } XKbdFeedbacksSt at e;

typedef struct { Xl D cl ass; int | engt h; XID id; int accel Num
int accel Denom int threshol d; } XPtrFeedbackSt at e;

typedef struct { XID cl ass; int | engt h; Xl D id;
int resol ution; int m nVal ; int maxVal ; } Xl nt eger FeedbackSt at e;

typedef struct { XID cl ass; int | engt h; Xl D id;
int max_synbol s; i nt num syns_support ed; KeySym *syns_supported;

} XStringFeedbackSt at e;

typedef struct { Xl D cl ass; int | engt h; XID id; i nt percent;
int pitch; int duration; } XBell FeedbackSt at e;

typedef struct { XID cl ass; int | engt h; Xl D id;
int | ed_val ues; int | ed_mask; } XLedFeedbacksSt at e;

typedef struct { XI D cl ass; int | engt h; Xl D id;

} XFeedbackControl ;

typedef struct { Xl D cl ass; int | engt h; XID id; int accel Num
int accel Denom int threshol d; } XPtrFeedbackControl ;

typedef struct { Xl D cl ass; int | engt h; XI D id; int click;
int percent; i nt pitch; int dur ati on; i nt | ed_mask;
int | ed_val ue; int key; int aut o_repeat _node; } XKbdFeedbackControl ;

typedef struct { XID cl ass; int | engt h; Xl D id;
int num keysyns; KeySym *syns_t o_display; } XStringFeedbackControl;

typedef struct { XID cl ass; int | engt h; Xl D id;
int int_to_display; } Xl ntegerFeedbackControl;

typedef struct { Xl D cl ass; int | engt h; XID id; i nt percent;
int pitch; int duration; } XBell FeedbackControl ;

typedef struct { XI D cl ass; int | engt h; XID id; int | ed_mask;
int | ed_val ues; } XLedFeedbackControl ;

/*** *

* An array of XDevicelist structures is returned by the

* XLi st I nput Devices function. Each entry contains information

* about one input device. Anpbng that information is an array of

* pointers to structures that describe the characteristics of * the input device. * */
typedef struct _XAnyd assinfo *XAnyd assPtr;

typedef struct _XAnyd assinfo { XI D cl ass; int | engt h; } XAnyd assl nf o;

typedef struct _XDevicel nfo *XDevicelnfoPtr;

typedef struct _XDevicel nfo { XI D id;

57

X Input Extension Library Specification X11, Release 5

At om type;
char *nane; int num cl asses;
int use; XAnyd assPtr i nputcl assinfo; } XDevi cel nf o;

typedef struct _XKeylnfo *XKeylnfoPtr;

typedef struct _XKeylnfo { XI D cl ass; int | engt h;
unsi gned short m n_keycode; unsi gned short max_keycode;
unsi gned short num keys; } XKeyl nf o;

typedef struct _XButtonlnfo *XButtonlnfoPtr;

typedef struct _XButtonlnfo { XI D cl ass; int | engt h;
short num but t ons; } XButtonl nfo;

typedef struct _XAxislnfo *XAxislnfoPtr;

typedef struct _XAxislnfo { i nt resol ution; int m n_val ue;
int max_val ue; } XAxi sl nfo;

typedef struct _XVal uatorlnfo *XVval uatorlnfoPtr;

typedef struct _XVal uatorlnfo { XI D cl ass;
int | engt h; unsi gned char num axes;
unsi gned char node; unsi gned | ong nmoti on_buffer;
XAxi sl nfoPtr axes; } Xval uat or | nf o;

/*** *

* An XDevice structure is returned by the XOpenDevi ce function.

* It contains an array of pointers to Xl nputd asslinfo structures.

* Each contains information about a class of input supported by the

* device, including a pointer to an array of data for each type of event
* the device reports. * */

typedef struct { unsi gned char i nput _cl ass;
unsi gned char event _type_base; } Xl nputd assl nfo;

typedef struct { XI'D devi ce_i d;
i nt num cl asses; Xl nput d assl nfo *cl asses;

} XDevi ce;

/*** *

* The following structure is used to return information for the
* XGet Sel ect edExt ensi onEvents function. * */

typedef struct { XEvent d ass event _type; XID devi ce;
} XEvent Li st ;

/*** *

* The followi ng structure is used to return notion history data from
* an input device that supports the input class Valuators.

58

X Input Extension Library Specification X11, Release 5

* This information is returned by the XGet Devi ceMbti onEvents functi on.

* */
typedef struct { Tinme tinme; int *data; } XDevi ceTi neCoord;
/*** *
* Device state structure. * */

typedef struct { Xl D devi ce_i d; int num cl asses;
Xl nput Ol ass *data; } XDeviceState;

typedef struct { unsi gned char cl ass; unsi gned char | engt h;
unsi gned char num val uat ors; unsi gned char node; int *val uat ors;
} Xval uat or St at e;

typedef struct { unsi gned char cl ass; unsi gned char | engt h;
short num keys; char keys[32]; } XKeyState;

typedef struct { unsi gned char cl ass; unsi gned char | engt h;
short num but t ons; char buttons[32]; } XButtonState;

/*** *

* Function definitions. * */

XDevi ce *XOpenDevi ce() ; XDevi cel nfo *XLi st | nput Devi ces();
XDevi ceTi meCoor d * XCet Devi ceMot i onEvent s();

KeySym * XCet Devi ceKeyMappi ng() ;

XModi fi er Keymap * XCet Devi ceModi fi er Mappi ng() ;

XFeedbackSt at e * XCGet FeedbackControl ();

XExt ensi onVer si on * XCet Ext ensi onVer si on();

XDevi ceSt at e *XQuer yDevi ceState();

XEvent C ass * XCet Devi ceDont Propagat eLi st (); #endif /* _XINPUT_H_ */

/* Definitions used by the server, library and client */

#ifndef _XI_H_

#define _Xl _H

#defi ne sz_xGet Ext ensi onVer si onReq 8 #define sz_xGCet Ext ensi onVer si onRepl y 32
#define sz_xLi st| nput Devi cesReq 4 #define sz_xListlnputDevicesReply 32
#defi ne sz_xOpenDevi ceReq 8 #defi ne sz_xOpenDevi ceRepl y 32
#define sz_xd oseDevi ceReq 8 #defi ne sz_xSet Devi ceMbdeReq 8
#defi ne sz_xSet Devi ceMbdeRepl y 32

#defi ne sz_xSel ect Ext ensi onEvent Req 12

#defi ne sz_xGCet Sel ect edExt ensi onEvent sReq 8

#defi ne sz_xGet Sel ect edExt ensi onEvent sRepl y 32
#defi ne sz_xChangeDevi ceDont Propagat eLi stReq 12

#defi ne sz_xGet Devi ceDont Pr opagat eLi st Req 8
#defi ne sz_xGet Devi ceDont Propagat eLi st Repl y 32
#defi ne sz_xGet Devi ceMbt i onEvent sReq 16
#define sz_xGet Devi ceMbt i onEvent sReply 32
#defi ne sz_xChangeKeyboar dDevi ceReq 8

59

X Input Extension Library Specification X11, Release 5
#defi ne sz_xChangeKeyboar dDevi ceRepl y 32

#defi ne sz_xChangePoi nt er Devi ceReq 8 #define sz_xChangePoi nt er Devi ceRepl y 32
#defi ne sz_xG abDevi ceReq 20 #defi ne sz_xG abDevi ceReply 32
#defi ne sz_xUngrabDevi ceReq 12 #defi ne sz_xG abDevi ceKeyReq 20
#defi ne sz_xG abDevi ceKeyRepl y 32

#defi ne sz_xUngrabDevi ceKeyReq 16

#define sz_xG abDevi ceButt onReq 20

#define sz_xG abDevi ceButtonRepl y 32 #defi ne sz_xUngrabDevi ceButt onReq 16
#define sz_xAl | owDevi ceEvent sReq 12 #define sz_xGet Devi ceFocusReq 8
#define sz_xGet Devi ceFocusRepl y 32

#defi ne sz_xSet Devi ceFocusReq 16 #define sz_xGet FeedbackControl Req 8
#defi ne sz_xGet FeedbackCont rol Repl y 32

#defi ne sz_xChangeFeedbackContr ol Req 12 #define sz_xGet Devi ceKeyMappi ngReq 8
#defi ne sz_xGet Devi ceKeyMappi ngRepl y 32

#defi ne sz_xChangeDevi ceKeyMappi ngReq 8

#define sz_xGet Devi ceModi fi er Mappi ngReq 8

#define sz_xSet Devi ceModi fi er Mappi ngReq 8

#defi ne sz_xSet Devi ceModi fi er Mappi ngRepl y 32

#define sz_xGet Devi ceBut t onMappi ngReq 8

#defi ne sz_xGet Devi ceBut t onMappi ngRepl y 32

#defi ne sz_xSet Devi ceBut t onMappi ngReq 8

#defi ne sz_xSet Devi ceBut t onMappi ngRepl y 32

#define sz_xQueryDevi ceSt at eReq 8 #define sz_xQueryDevi ceSt at eRepl y 32
#defi ne sz_xSendExt ensi onEvent Req 16 #defi ne sz_xDevi ceBel | Req 8
#defi ne sz_xSet Devi ceVal uat or sReq 8 #defi ne sz_xSet Devi ceVal uat or sRepl y 32

#defi ne | NAVE " XI nput Ext ensi on"

#def i ne Xl _KEYBOARD " KEYBOARD' #defi ne XI _MOUSE " MOUSE" #def i ne X _TABLET" TABLET"
#def i ne Xl _TOUCHSCREEN " TOUCHSCREEN' #def i ne Xl _TOUCHPAD " TOUCHPAD'
#def i ne Xl _BARCODE " BARCODE" #define XI_BUTTONBOX " BUTTONBOX"
#def i ne Xl _KNOB_BOX " KNOB_BOX" #def i ne Xl _ONE_KNOB " ONE_KNOB"
#define XI_NINE_KNOB "N NE_KNOB" #def i ne Xl _TRACKBALL " TRACKBALL"
#def i ne Xl _QUADRATURE " QUADRATURE" #define X _I D MODULE "I D_MODULE"
#def i ne Xl _SPACEBALL " SPACEBALL" #defi ne XI _DATAGLOVE " DATAGLOVE"
#defi ne XI _EYETRACKER " EYETRACKER' #defi ne Xl _CURSORKEYS " CURSORKEYS'
#define XI_FOOTMOUSE " FOOTMOUSE"

#def i ne Dont _Check #define Xinput_lnitial _Rel ease 1
#defi ne Xl nput _Add_XDevi ceBel | 2 #defi ne Xl nput _Add_XSet Devi ceVal uators 3
#define Xl _Absent 0 #defi ne Xl _Present 1

#define Xl _Initial_Rel ease_Mj or 1#define Xl_Initial_Rel ease_M nor 0

#defi ne Xl _Add_XDevi ceBel | _Maj or 1 #define Xl _Add_XDevi ceBel | _M nor 1

#defi ne Xl _Add_XSet Devi ceVal uat ors_Maj or 1 #define Xl _Add_XSet Devi ceVal uat ors_M nor 2

#def i ne NoSuchExt ensi on 1

#def i ne COUNT 0 #def i ne CREATE 1

#defi ne NewPoi nt er 0 #def i ne NewKeyboard 1

60

X Input Extension Library Specification

X11, Release 5

#def i ne XPO NTER 0 #def i ne XKEYBOARD 1

#def i ne UseXKeyboar d 0

#def i ne | sXPoi nt er 0 #def i ne | sXKeyboar d 1 #defi ne | sXExt ensi onDevi ce 2
#defi ne AsyncThi sDevi ce 0 #defi ne SyncThi sDevi ce 1 #defi ne Repl ayThi sDevi ce 2
#defi ne AsyncQt her Devi ces 3 #define AsyncAll 4 #def i ne SyncAl | 5

#defi ne Fol | owkKeyboard 3 #defi ne Revert ToFol | owKeyboard 3

#defi ne DvAccel Num (1L << 0) #defi ne DvAccel Denom (1L << 1)
#define DvThreshol d (1L << 2)

#defi ne DvKeyd i ckPer cent (1L<<0) #defi ne DvPercent (1L<<1)
#define DvPitch (1L<<2) #define DvDuration (1L<<3)
#defi ne DvLed (1L<<4) #defi ne DvLedMode (1L<<5)
#defi ne DvKey (1L<<6) #defi ne DvAut oRepeat Mode (1L<<7)

#define DvString (1L << 0)

#defi ne Dvl nt eger (1L << 0)

#define Relative 0 #def i ne Absol ute 1

#def i ne AddTolLi st 0 #def i ne Del et eFronlLi st 1

#defi ne Keyd ass 0 #defi ne ButtonC ass 1 #defi ne Val uat or C ass 2
#defi ne FeedbackC ass 3 #define Proximtyd ass 4 #def i ne FocusC ass 5
#define Ot herd ass 6

#def i ne KbdFeedbackC ass 0 #defi ne PtrFeedbackd ass 1
#define StringFeedbackd ass 2 #defi ne | nt eger Feedbackd ass

#def i ne LedFeedbackC ass 4 #def i ne Bel | FeedbackC ass 5

#defi ne _devi cePoi nterMtionH nt 0 #define _deviceButtonlMtion 1
#define _deviceButton2MWtion 2 #define _deviceButton3MWdtion 3
#define _deviceButton4dMotion 4 #define _deviceButton5Mtion 5
#defi ne _devi ceButtonhbtion 6 #define _devi ceButtonG ab 7
#defi ne _devi ceOmner G abButt on 8 #def i ne _noExt ensi onEvent 9

#defi ne Xl _BadDevi ce 0 #defi ne Xl _BadEvent 1 #defi ne Xl _BadMWbde 2
#define Xl _DeviceBusy 3#define Xl _Badd ass 4

t ypedef unsi gned | ong XEvent d ass;
/*** *

* Extension version structure. * */

int present; short

m nor _version; } XExtensionVersion;

typedef struct { maj or _versi on;

short

#endif /* XI_H */

61

X Input Extension Library Specification X11, Release 5

Table of Contents

1. INpUt EXENSION OVEIVIEIWeciiieitieieite e cteesie sttt st st aeste e eaesbesreenaesesresnneneas 1
1.1, DESIGN APPIOBCN .ttt b bbb nn et b e n e e e e e 1
1.2. COre INPUL DEVICES ...ttt sttt st et te s be e be et e sbesaeeaeebesreenneneas 1
1.3. EXENSION INPUE DEVICES ..ottt 1
L1.3.1. INPUL DEVICE ClASSES ...cveeiieieeiieeiieesie e st e seesteeste e teesteeste e te e teeste e te e te e teereeteeteenseennenns 2
1.4. Using EXENSiON INPUE DEVICEScoviieiieie ettt 2
2. Library EXIENSION REQUESEScciviieiriiriiniese st 3
2.1. Window Manager FUNCLIONSccoouiiieiiiiciece ettt 3
2.1.1. Changing The COrE DEVICESc.ccriririeieieiesiesieie sttt 3
2.1.2. Event Synchronization And Core Grabiscceeceereeieeseeseeseeseeseesee e seesaeesseenees 4
2.1.3. EXENSION ACHVE GrabSc.ccueeieiicieceeie sttt st ns 5
2.1.4. Passively Grabhing A KEY ..ottt eas 7
2.1.5. Passively Grabhing A BULLONccooeiiiiiieie ettt e e e 9
2.1.6. TRAWING A DEVICE ...ttt n e 12
2.1.7. Controlling DEVICE FOCUScceiuiiuieieite ettt nas 13
2.1.8. Controlling Device FEadDaCKcooiiireiriririesese e 15
2.1.9. Ringing aBell on an INPUE DEVICEcoceeieeiieiieree et et 22
2.1.10. Controlling DeVICe ENCOTINGccveverriieiiieeiesieseeiese e ete sttt sa et nas 22
2.1.11. Controlling BUttON MaPPRIiNGccceeruerrerieereriesreseeiesiesre e s e sne e sne s 25
2.1.12. Obtaining The State Of A DEVICEooiieieiee et 26
2.2. Events and Event-Handling FUNCLIONSccooiiiiieiene e 28
A T Y | I8/ o= S 28
2.2.2. EVENE CIBSSES ...cuvviveitieiesie st eteete e st et e testesse e e steste e s estesteeseensestesseeseensessesseenenssesnenneenes 29
2.2.3. EVENE SIIUCKUIES ...ttt st b e b e b e e sbe e saeesaeesneenneas 29
2.2.3.1. DEVICE KEY EVENLScoiiiecieceste ettt sttt sttt a et s ne e e 30
2.2.3.2. DeVICE BULLON EVENLS ..ottt 30
2.2.3.3. DEVICE MOLION EVENESoviiieeier ettt e 31
2.2.3.4. DEVICE FOCUS EVENLSocveciecieie ettt sttt ns 32
2.2.3.5. Device StAteNOLIfY EVENLcccociiiieecee sttt 33
2.2.3.6. Device Mapping EVENLcccociiieiee ettt st 34
2.2.3.7. ChangeDeviCeNOLify EVENT ..o 35
2.2.3.8. ProXimity EVENESoceeieciececese ettt sttt st s b e s a et sne e nas 35
2.2.4. Determining The EXIENSION VEISIONcccoiiiriiriiieieiesie ettt 36
2.2.5. Listing Availabl€ DEVICESccueoieeieesee ettt nne s 37
2.2.6. Enabling And Disabling EXtENSION DEVICEScceereriirienieiniresiesee e 39
2.2.7. Changing The Mode Of A DEVICEcooiiirieere ettt 41
2.2.8. Initializing Vauators on an INPULt DEVICEccccvieeievi e 41

X Input Extension Library Specification X11, Release 5

2.2.9. Getting INput DeVIiCe CONIOISooueeeeeiee et 42
2.2.10. Changing INput DeVice CONIOISccviuiiuieieseceeese et 43
2.2.11. Selecting EXtension DeviCe EVENLScciiiiiiieiiesereeeees e 44
2.2.12. Determining Selected DeVICE EVENESocueeieiieceeee ettt 45
2.2.13. Controlling Event Propagationccoeoeeerereneienese e 46
A S = g 1o [AN I = o | 47
2.2.15. Getting MOtiON HISLOMYcc.eciueiiiiiieierie sttt sttt st sne e nas 49

63

